SPIROTIGER®: UNA NUOVA PROPOSTA DI APPLICAZIONE IN SOGGETTI CON LOMBALGIA

Tesi di laurea in
T.T. DELL’ESERCIZIO FISICO ADATTATO
Presentata da: Antonio D’alessandro
Relatore: Chiar.mo Prof. Guido Belli

Matricola n° 0000817630
Correlatore: Chiar.mo Dott. Saverio Colonna

Anno accademico 2017-2018
# INTRODUZIONE

# CAPITOLO 1. IL LOW BACK PAIN

## 1.1 DEFINIZIONE DI LOW BACK PAIN

## 1.2 PREVALENZA DEL LOW BACK PAIN

## 1.3 IMPATTO ECONOMICO DEL LOW BACK PAIN

## 1.4 FATTORI DI RISCHIO PER IL LOW BACK PAIN

## 1.5 CLASSIFICAZIONI: SHIRLEY SAHRMANN, PETER B. O’SULLIVAN E SAVERIO COLONNA

### 1.5.1 SHIRLEY SAHRMANN

### 1.5.2 PETER B. O’SULLIVAN

### 1.5.3 SAVERIO COLONNA

## 1.6 RIFLESSIONI CONCLUSIVE E NUOVE PROPOSTE

# CAPITOLO 2. SISTEMA RESPIRATORIO E ANATOMIA DEI MUSCOLI DELLA RESPIRAZIONE

## 2.1 PANORAMICA DEL SISTEMA RESPIRATORIO

## 2.2 REGOLAZIONE DELLA RESPIRAZIONE

## 2.3 I MUSCOLI DELLA RESPIRAZIONE

### 2.3.1 IL DIAFRAMMA [64,66-68,70]

### 2.3.2 I MUSCOLI ADDOMINALI

### 2.3.3 I MUSCOLI ACCESSORI DELLA RESPIRAZIONE

## 2.4 MECCANICA DELLA RESPIRAZIONE

# CAPITOLO 3. SPIROTIGER

## 3.1 DESCRIZIONE E FUNZIONALITÀ SPIROTIGER

## 3.2 l’ iperpnea isocapnica

## 3.3 rmet: la ginnastica del respiro ed evidenze scientifiche

# CAPITOLO 4. APPLICAZIONE IN CLINICA

## 4.1 STATO DELL’ARTE E OBIETTIVO DELLO STUDIO

## 4.2 DISEGNO DELLO STUDIO, SOGGETTI, MATERIALI E METODI

### 4.2.1 PROTOCOLLO CON SPIROTIGER®
INTRODUZIONE

Il Low Back Pain (LBP) è definito come un dolore riferito in una zona compresa tra la dodicesima costa e la piega interglutea [1]. Circa l’85% delle persone soffre almeno una volta nella vita di questa condizione.

Tale patologia rappresenta, inoltre, una condizione economicamente e socialmente costosa. Il suo impatto socio-economico si traduce, infatti, in ingenti costi diretti (spese socio-assistenziali) e indiretti (welfare e perdita di produttività) per lo stato e la società.

Sia l’incidenza che la prevalenza sono alte, anche se presentano una variabilità in base alle fasce d’età. Nel 90% dei casi però il LBP viene definito idiopatico, ovvero la causa non è conosciuta. I fattori di rischio che determinano questa patologia sono molti ed investono diverse “aree della persona” come quella: lavorativa, sociale, relazionale, ambientale, psicologica e biologica (anatomica, fisiologica e istologica).

In merito all’area biologica non c’è un consenso comune su quali siano i fattori di rischio meccanici; a fronte dell’incertezza sui riferimenti teorici, tale questione ha assunto una crescente rilevanza in considerazione dell’esigenza di ricercare soluzioni.

In particolare, negli ultimi anni, sta riscuotendo notevole interesse da parte della comunità scientifica lo studio sulla respirazione, nelle sue caratteristiche fisiologiche e meccaniche. Nell’ambito del LBP, si sta ipotizzando che una disfunzione della respirazione e/o dei muscoli che ne sono protagonisti, possa indurre allo sviluppo o al peggioramento della patologia, e che un riequilibrio di quest’ultimi possa dare come indotto un miglioramento della sintomatologia.

A tal riguardo recenti studi hanno affermato una relazione tra una scarsa stabilità del core e il LBP, notando una diminuzione della attività della muscolatura del core e della stabilità della colonna vertebrale nei soggetti che soffrono di mal di schiena [1-4]; individuato degli alterati patterns di respirazione nelle persone con mal di schiena
cronico idiopatico, tra cui differenze nella capacità polmonare[2,5] e nella meccanica del diaframma[2,6]; dimostrato che un sovraccarico della respirazione fino a esaurimento attiverebbe un riflesso metabolico inspiratorio, che a sua volta provocherebbe un’attivazione simpatica e di conseguenza una vasocostrizione periferica che potrebbe limitare l’afflusso di sangue ai muscoli in attività [21-24].

Da questi studi si deduce un collegamento tra funzione respiratoria, patterns respiratori, stabilità del core, e mal di schiena.

Altri studi [7-9], invece, hanno dimostrato un miglioramento in acuto della flessibilità della catena cinetica posteriore, tramite un lavoro di stretching del diaframma, sottolineando l’importanza di considerare il corpo umano nella sua globalità, come un sistema che si regola e adatta, anche se il fattore perturbatore avviene lontano dalla sede corporea che ha creato un compenso.

Si può dunque ipotizzare che migliorare la performance dei muscoli respiratori significa creare benefici in tutto l’apparato muscolo-scheletrico, a partire dal maggior afflusso di sangue ossigenato che arriva alla periferia, ad una migliore SpO2, ad un migliore controllo motorio del diaframma che insieme agli altri muscoli del core fornisce una stabilità a tutte le componenti della regione toraco-addomino-pelvica.

Da qui nasce l’idea che un lavoro a monte, sull’allenamento di resistenza dei muscoli respiratori tramite Spirotiger®, unito a delle espirazioni profonde forzate, che inducano il diaframma a risalire e ad allungarsi [16], possano essere la strategia ottimale da perpetrare per riscuotere dei miglioramenti a valle, in questo caso specifico, a livello della muscolatura ischio-crurale.

Il rapporto biomeccanico del diaframma con le altre strutture corporee [7-10,18] supporta l’idea che un allenamento del diaframma durante allungamento statico della catena cinetica posteriore caudale, seguito da un programma di esercizi di stabilizzazione del core e di riequilibrio delle catene mio-fasciali secondo le teorie di Peter O’Sullivan, Shirley Sahrmann, Saverio Colonna, potrebbe avere ripercussioni positive in altre strutture distanti.
Ad oggi nessuno studio ha ancora indagato gli effetti di un allenamento di resistenza della muscolatura respiratoria durante posture di allungamento statiche.

Prendendo in considerazione la complessa struttura del diaframma si cerca di individuare gli indotti in termini di sintomatologia algica, stato di salute/qualità della vita, e flessibilità degli ischio-crurali.

Questi muscoli originano a livello della tuberosità ischiatica, si inseriscono a livello del cavo popliteo e rappresentano un link anatomico e funzionale tra queste due regioni, riuscendo addirittura a influenzare le parti corporee a monte e a valle. Da un punto di vista mio-fasciale, la fascia poplitea e la fascia della gamba sono messe in tensione prossimalmente da alcune fibre del bicipite femorale, così come da alcune fibre del semimembranoso e del semitendinoso. Questi tre muscoli non solo mettono in tensione la fascia poplitea distalmente, ma anche il legamento sacro-tuberoso prossimalmente. Il legamento sacro-tuberoso si collega prossimalmente alla fascia toraco-lombare, che a sua volta si collega al diaframma [67], e da questa originano gli erettori spinali che durante la fase di estensione lombare partecipano alla fase di estensione d’anca. Inoltre, la superficie posteriore del legamento sacro-tuberoso offre origine alle fibre inferiori del grande gluteo e possiede alcune fibre che sono in continuità con il tendine del capo lungo del bicipite femorale [19-20]. Questa concatenazione mio-fasciale è messa in tensione durante la fase di spinta del piede ad ogni passo [19]. Tuttavia in letteratura non si è ancora individuato un ruolo preciso che gli ischio-crurali assolvono nel LBP. Una possibile spiegazione è la mancanza di una chiara definizione di LBP e di quali possano essere le cause meccaniche. Ciò comporta che la maggior parte dei casi di LBP verrà trattata in maniera similare senza alcun principio di specificità dell’individuo. Tuttavia alcuni autori hanno proposto dei sistemi di classificazione che inseriscono i pazienti in sottogruppi di LBP con caratteristiche biomeccaniche simili. Questo approccio sta permettendo di avere una migliore comprensione della patologia poiché: da un lato, ha permesso di ritrovare pattern simili in diversi casi clinici; dall’altro ha riscontrato che le diverse sindromi si comportano in maniera diversa pur evidenziando il dolore nella stessa regione.
Il ruolo degli ischiocrurali nelle diverse sindromi è stato indagato a lungo, ma alle volte utilizzando strumenti non sempre adeguati. Non riuscendo a definire, ad oggi, il loro coinvolgimento alcuni ipotizzano che la loro retrazione sia un meccanismo di compenso ad una instabilità vertebrale. Importante è sottolineare il ruolo degli harmstring, i quali sono primariamente estensori dell’anca e secondariamente flessori dell’articolazione del ginocchio avendo comunque un maggiore vantaggio meccanico sull’anca. Nonostante ciò, hanno un ruolo importante nella fase di stance e di swing durante il passo, stabilizzando il ginocchio durante il contatto iniziale (initial contact) e decelerando la tibia nella fase terminale dello swing [14]. L’intervento sugli ischiocrurali è importante poiché una ridotta lunghezza muscolare può determinare un’alterata efficienza muscolare, e questa viene considerata una frequente condizione dovuta ad uno stile di vita sedentario.

Infatti, è stato riportato in passato che gli harmstrings tendono a diventare corti e rigidi a causa della sedentarietà [15]. Secondo alcuni ricercatori, questo loro accorciamento ed irrigidimento potrebbe essere una delle cause meccaniche che portano allo sviluppo del LBP [11-12,17].

Pertanto, partendo da queste direttrici concettuali il presente lavoro di ricerca analizza nella prima parte lo stato dell’arte del Low Back Pain, approfondendo in particolare la sua epidemiologia, i fattori di rischio, e le classificazioni ad oggi proposte e che hanno riscontrato maggior successo da parte della letteratura scientifica. Nella seconda parte segue la descrizione ed analisi del sistema respiratorio, dei muscoli che lo costituiscono e delle loro connessioni all’interno del corpo umano. Nella terza parte è descritto lo Spirotiger®, sistema per l’allenamento dei muscoli respiratori in “iperpnea isocapnica”, seguito da un’analisi della letteratura scientifica sui benefici di una ginnastica respiratoria. Nella quarta parte è esposto il progetto di ricerca sperimentale basato sulle nozioni teoriche precedentemente esposte, analizzando con spirito critico punti di forza e criticità dello studio, e fornendo i risultati dello studio stesso. Infine verranno fornite le conclusioni finali e le riflessioni sui dati ottenuti e sull’utilità
dell’allenamento della respirazione nei confronti del LBP e di una migliore qualità di vita.
CAPITOLO 1. IL LOW BACK PAIN

1.1 DEFINIZIONE DI LOW BACK PAIN

Il Low Back Pain, meglio conosciuto come lombalgia o “mal di schiena”, viene definito come dolore o condizione di disagio, localizzato in una zona compresa al di sotto della dodicesima costa fino alle pieghe glutee inferiori, con o senza irradiazione del dolore agli arti inferiori [26-27]. Il Low Back Pain può essere definito come “specifico”, ovvero secondario ad una causa patologica scatenante, o “non specifico” il quale rappresenta all’incirca lo 85-90% dei casi. Il Low Back Pain consta di diverse classificazioni a seconda se viene preso in considerazione il periodo di insorgenza, la localizzazione dei sintomi, o la causa patologica scatenante, se si tratta di lombalgia specifica. La letteratura scientifica, ad oggi, non ha ancora maturato una definizione consolidata, univoca e condivisa di lombalgia. Tale ambiguità probabilmente è dovuta ai numerosi casi eterogenei di lombalgia, anche se presentavano dolore nella stessa regione corporea, o al grande numero di lombalgie non specifiche presenti nel mondo che non permettono il delinearsi di una definizione comune e definitiva.

Per instituire un elenco di risultati standardizzati e clinicamente rilevanti come ad esempio i sintomi, lo stato funzionale, il benessere generale e la disabilità della persona, risulta necessario trovare una definizione comune di lombalgia. In questa complessità definitoria, R.A. Deyo [28] esplicita i motivi e i vantaggi di un approccio standardizzato alla valutazione del soggetto lombalgico:

1. migliora la comparabilità dei risultati fra diversi studi clinici;
2. migliora la comparabilità delle caratteristiche di base dei pazienti fra diversi studi clinici;
3. facilita la raccolta dei dati di multipli studi clinici, rendendo più semplici le meta-analisi;
4. si rende più semplice l’analisi costi-benefici creando una metrica per analizzare l’efficacia degli interventi;
5. si incoraggia un report più completo dei dati rilevanti;
6. facilita la conduzione di studi multicentrici;
7. facilita il disegno e la revisione di manoscritti, pubblicazioni, e proposte di ricerca;
8. evita di “reinventare la ruota”.

La lombalgia è solidamente definita, in base al periodo d’insorgenza, in acuta se dura meno di sei settimane, subacuta se permane in un periodo tra le sei settimane e i tre mesi, cronica quando dura più di 3 mesi. Episodi frequenti di “mal di schiena” vengono definiti come lombalgia ricorrente. Molto
spesso accade che la lombalgia non si risolve completamente e i soggetti incorrono in periodi di riacutizzazione della sintomatologia [27]. Recentemente nella letteratura sono state pubblicate delle linee guida [29] collegate alle definizioni di Low Back Pain dell’International Classification of Functioning, Disability, and Health (ICF) e dell’International Statistical Classification of Disease and related Health Problems (ICD) con l’intento di rendere più semplice e più efficaci gli interventi nella pratica clinica. Le macrocategorie che si delineano in queste linee guida vengono collegate a delle limitazioni/problematiche a livello di funzione corporea e sono rispettivamente:

1. lombalgia acuta o subacuta con deficit di mobilità (b71011 Mobilità di alcune articolazioni);
2. lombalgia acuta, subacuta o cronica con problematiche di coordinazione motoria (b7601 Controllo di complessi movimenti volontari);
3. lombalgia acuta con riferito dolore nelle estremità inferiori (b28015 Dolore degli arti inferiori);
4. lombalgia acuta, subacuta, o cronica con dolore irradiato (b2804 Dolore irradiato in un segmento o regione);
5. lombalgia acuta o subacuta collegata a tendenze affettivo-cognitive (b2703 Sensibilità ad uno stimolo nocivo, b1522 Gamma di emozioni, b1608 Funzioni del pensiero, nello specifico la tendenza ad elaborare/attribuire stimoli fisici a motivi/ragioni di origine cognitiva, b1528 Funzioni Emotive, nello specifico la tendenza ad elaborare/attribuire sintomi fisici per motivi/ragioni di origine affettiva-emozionale);
6. lombalgia cronica con relativo dolore generalizzato (b2800 Dolore generalizzato, b1520 Appropriatezza delle emozioni, b1602 Contenuto del pensiero).

1.2 PREVALENZA DEL LOW BACK PAIN

La prevalenza è considerata una fotografia della popolazione e nello specifico è la proporzione di individui che presentano una determinata patologia in un determinato istante o periodo di tempo. Nello specifico è il rapporto tra i casi colpiti da Low Back Pain e il totale della popolazione.

Il Low Back Pain è la più comune patologia muscolo-scheletrica che affligge la popolazione adulta con una prevalenza che supera lo 84% [56]. Il LBP rappresenta la causa predominante di disabilità nel mondo, di problematiche socioeconomiche e di benessere della persona [56]. Per quanto riguarda il LBB cronico si stima che si aggiri intorno al 15-45% negli operatori sanitari francesi [57], mentre negli USA la prevalenza puntuale di CLBP in adulti fra i 20 e i 69 anni si stima si aggiri intorno al 13,1% [58]. Per quanto riguarda l’Italia, invece, si stima che la prevalenza di LBP sia del 5,91% [59]. La prevalenza di lombalgia acuta e cronica sta continuando a raddoppiarsi da più di un decennio questa parte, e a

1 Codici identificativi dell’ICF sulla funzionalità corporea.

12
crescere nella popolazione adulta, colpendo uomini e donne di tutte le etnie [60]. Risulta normale notare che la prevalenza di LBP cambia a seconda delle caratteristiche della popolazione studiata e della definizione utilizzata (lombalgia acuta, subacuta, cronica, ricorrente).

G.B.J. Andersson, in un suo articolo, cita che la prevalenza “annuale” di LBP varia dal 15% al 45%, mentre la prevalenza “puntuale” si attesta intorno al 30% [31]. Tuttavia il Lancet, dopo più di 15 anni da questo studio, delinea una situazione ben più grave, arrivando a considerare il LBP come la maggiore causa di disabilità al mondo [30]. Nel 2015, secondo i dati riportati dal Lancet, la prevalenza globale di lombalgie limitanti qualsiasi tipo di attività è stata calcolata del 7,3% e questo significa che 540 milioni di persone sono state colpite da LBP almeno una volta nella vita.

Un importante aspetto da considerare è che questi due studi sono stati svolti a diciassette anni di distanza e durante un periodo di poco maggiore, dal 1990 al 2015, secondo il Lancet, si è registrato un incremento di anni vissuti con disabilità (YLD)2 a causa del LBP del 54% [33]. Ciò sta a significare che la lombalgia è responsabile di 60,1 milioni di anni vissuti con disabilità aggiustati per età (DALYs)3 nel 2015, con l’aumento maggiore in paesi con basse e medie entrate, fra cui Asia, Africa e Medio-Oriente. Questa disparità economica rende questi paesi più vulnerabili al LBP considerando anche il fatto che probabilmente i loro sistemi sociali e di tutela della salute sono ancora poco sviluppati o perché ancora gravati dalla lotta contro le malattie infettive tanto da non riuscire ad affrontare la problematica rappresentata dall’insorgenza di LBP. Dal grafico (Figura 1) è possibile notare che la condizione di disabilità creato dal LBP è maggiore nei gruppi d’età dei lavoratori, registrando più di 4 milioni di DALYS nei gruppi stratificati per età dai 25 ai 64 anni. Questo è un dato che ci fa riflettere su un possibile fattore di rischio per l’insorgenza di LBP, ovvero appartenere alla classe dei lavoratori, a maggior ragione se il lavoro comprende sforzi fisici ripetuti o posture mantenute nel tempo.

---

2 Years Lived with Disability

3 Disability-Adjusted Lived-Years
Figura 1| Onere globale del LBP, espresso in anni di vita con disabilità, aggiustato per età, dal 1990 al 2015. Dati del Global Health Data Exchange [34].
In generale, si può affermare che la lombalgia non si manifesta nella prima decade di vita ma la sua prevalenza cresce progressivamente durante l’adolescenza, aggirandosi intorno al 40% fra i 9 e i 18 anni [35,36]. Per quanto riguarda la prevalenza globale media in periodo pari ad 1 anno, nella popolazione adulta, si attesta intorno al 37% e il suo picco si osserva in età prossime la metà della vita media essendo più marcata nelle donne che negli uomini (Figura 2) [38]. Infine, la limitazione allo svolgere delle attività associata al LBP cresce all’aumentare dell’età [37].

Figura 2 | Prevalenza media di LBP associata al sesso e all’età.

1. IMPATTO ECONOMICO DEL LOW BACK PAIN

Il LBP è la causa principale di problematiche sociali ed economiche, tanto che la letteratura è d’accordo nel definire l’impatto economico del LBP, paragonabile ad altre patologie prevalenti ad alto costo come malattie cardiovascolari, cancro, malattie autoimmuni e problematiche di origine mentale [39]. L’impatto economico generato dal LBP viene di solito calcolato prendendo in considerazione i costi diretti (cure mediche, farmaci, prestazioni sanitarie e non.) e i costi indiretti (assenza del lavoro, perdita di produttività) che la patologia produce. In termini di costi indiretti, il LBP ha

“Prevention of the onset and persistence of disability associated with low back pain requires recognition that the disability is inseparable from the social and economic context of people’s lives and is entwined with personal and cultural beliefs about back pain. Health system and societal initiatives addressing low back pain should act in synergy with the WHO European Region action plan for the prevention and control of non-communicable diseases, which recognises the need for comprehensive promotion of musculoskeletal health. Because low back pain disability often affects employability in the informal sector, integration between health, workplace, and social services should also be a key goal.”

In questo articolo, si evidenzia che la strada da percorrere è quella della cultura del controllo e della prevenzione. L’autore, in particolare, afferma che quest’ultima
richiederebbe promozione, informazione sulle patologie muscolo-scheletriche e l’integrazione fra salute, luoghi di lavoro e servizi sociali.

2. **FATTORI DI RISCHIO PER IL LOW BACK PAIN**

Analizzare i possibili fattori di rischio risulta importante al fine di procurare fondamentali informazioni sull’eziologia del LBP e sulle variabili modificabili e non modificabili della suddetta sintomatologia, così come far emergere possibili limiti nel trattamento e nel follow-up dei soggetti con lombalgia.

Per individuare i fattori di rischio che con maggiore incidenza possono predire l’insorgenza di LBP, gli studiosi hanno considerato molteplici variabili.

Secondo Delitto A. e colleghi le due macro-categorie di fattori di rischio sono correlate all’individuo e alle attività della vita quotidiana (lavoro, abitudini e tempo libero). I fattori individuali includono fattori demografici, antropometrici, fisici e psicosociali. Tra questi, quelli che hanno riscosso maggiore attenzione sono i fattori genetici, di genere, età, corporatura, forza e flessibilità [42]. I fattori genetici sono stati correlati a disordini specifici della colonna vertebrale come la degenerazione discale [48]; resta, però, debole la correlazione fra ereditarietà genetica e sviluppo di LBP non specifico [42]. È stato dimostrato, invece, che fattori come l’ipertensione, il fumo, il sovrappeso e l’obesità sono associati allo sviluppo di sciatalgia [47]. Fra i fattori psicosociali lo stress, l’ansia e la depressione sono associati ad elevati livelli di disabilità provocati dal LBP. Secondo Patrick N. e colleghi nei fattori individuali andrebbero integrati il livello di educazione e di obesità del soggetto. Il livello di educazione è un forte predittivo di episodi di LBP più duraturi e l’obesità è fortemente correlata al LBP quando il BMI del soggetto è maggiore di 30 kg/m² [49,50]. Tuttavia, l’età detiene il titolo di più importante fattore di rischio per lo sviluppo della sintomatologia del LBP, tanto che la maggior parte degli studi ha evidenziato che all’aumentare dell’età il rischio di LBP cresce avendo la massima incidenza nella terza
decade di vita fino ai 60-65 anni di età [49]. Per quanto riguarda i fattori di rischio legati alle attività della vita quotidiana Patrick N. e colleghi sottolineano che l’elevato sforzo fisico richiesto in lavori manuali potrebbe correlarsi con maggiori possibilità di sviluppare LBP [50]. A dimostrazione di ciò, Matsui H. e colleghi hanno dimostrato una chiara correlazione tra sforzo fisico legato al lavoro e prevalenza di LBP (con eccezione per la prevalenza in tutta la vita in donne lavoratrici), trovando che la prevalenza puntuale di LBP in lavoratori manuali era del 39% in confronto al 18,3% in uomini che svolgevano un lavoro di tipo sedentario [51]. Una review del 2000 ha evidenziato, invece, che lavori manuali, flettersi in avanti, torcere il tronco, e le vibrazioni in tutto il corpo sono un fattore di rischio per il LBP [52]. Tuttavia, c’è da constatare i limiti che presenta la ricerca dei fattori di rischio per il LBP a causa della eterogeneità dei metodi di ricerca applicati, delle definizioni dei casi studiati, e della popolazione presa in esame.

3. CLASSIFICAZIONI: SHIRLEY SAHRMANN, PETER B. O’SULLIVAN E SAVERIO COLONNA

Vista l’entità della problematica sociale ed economica rappresentata dal LBP e la numerosa presenza dei fattori di rischio per l’insorgenza o cronicizzazione della stessa, risulta fondamentale rendere il più preciso, specifico ed adeguato l’intervento medico, fisioterapico e chinesiologico da sottoporre ai soggetti con lombalgia.

La maggior parte delle volte lo stesso trattamento viene applicato indistintamente a più soggetti che presentano la stessa sintomatologia ma che in realtà differiscono molto dal punto di vista clinico. La scelta dell’intervento andrebbe individualizzata, mediante specifici test, sulla base dello stile di vita del soggetto e della disabilità generata dalla

---

Figura 3| Rappresentazione grafica della catena statica-laterale, statico-dinamica posteriore, spirale posteriore sinistra [13]
sintomatologia stessa. È risaputo ormai che un intervento generalizzato possa essere inefficace o addirittura dannoso per il soggetto. Per questo la ricerca scientifica, dal ’90 ad oggi, sta provando a fornire delle indicazioni generali su come gestire i diversi casi ma soprattutto a definire quali siano e come si manifestino quest’ultimi, che alcuni autori definiscono “Sindromi”, ovvero complesso di sintomi, che possono essere provocati da cause multifattoriali. La recente letteratura suggerisce che interventi basati su di una classificazione in sottogruppi ha il potenziale di migliorare gli effetti dell’intervento stesso in confronto ad un approccio definito da Delitto A. e colleghi “One Size Fits All”, ovvero un approccio generalizzato e non individualizzato sulle specificità del soggetto. I tre principali autori che hanno proposto una classificazione delle lombalgie sono Shirley Sahrmann, Peter B. O’Sullivan e Saverio Colonna, quest’ultimo con la peculiarità di integrare le classificazioni fornite dagli altri due autori con un approccio legato alle teorie delle catene miofasciali (Figura 3).

1. **SHIRLEY SAHRMANN**

Secondo Shilrey Sahrmann [53], il recupero o il mantenimento del movimento sta alla base per la prevenzione o la cura di determinate disfunzioni muscolo-scheletriche. I movimenti devono essere eseguiti entro certi parametri, infatti, quando insorgono delle alterazioni nella precisione del movimento, nella lunghezza, forza, flessibilità dei muscoli e nel loro schema di reclutamento, si verificano alterazioni strutturali e istologiche che sfociano in una disfunzione del movimento.

Di conseguenza, movimenti ripetuti o posture sostenute nel tempo determinano nell’articolazione la suscettibilità al movimento in una determinata direzione intesa come l’insieme di movimenti compensatori in direzioni specifiche non fisiologiche. Di conseguenza l’articolazione, che non esegue più dei movimenti nella sua fisiologia, incrementa i movimenti accessori e dunque genera dei micro-danni tessutali che accumulandosi nel tempo evolveranno in traumi con conseguente dolore. La classificazione individuata dalla Sahrmann si basa dunque sull’identificazione della suscettibilità al movimento. Le “Sindromi da Disfunzione del Movimento” sono definite come condizioni di dolore localizzato, che trae la sua origine dall’irritazione del tessuto mio-fasciale peri-articolare e articolare. Origine e causa sono riconducibili a traumi o microtraumi di tipo meccanico legati al sovraccarico. L’autrice americana ha dunque sviluppato tre modelli: kinesiologico, pato-kinesiologico e kinesio-patologico. Il primo descrive gli elementi fondamentali che costituiscono il modello stesso e i
relativi componenti: (1) base (sistema muscolo-scheletrico), (2) modulatore (sistema nervoso), (3) biomeccanico (statica e dinamica), (4) sostegno (sistema cardiaco, polmonare e metabolico).

Gli altri due modelli invece mettono in relazione le alterazioni del movimento con la patologia. Tale relazione può essere bidirezionale, infatti, un'alterazione della struttura dovuta ad una patologia può alterare il movimento (modello pato-kinesiologico) e viceversa, un'alterazione del movimento può modificare la struttura (modello kinesio-patologico).

Dunque, le sindromi da disfunzione del movimento della colonna lombare prendono il nome dall'allineamento, dal tipo di sollecitazione o dalla direzione del movimento che produce dolore e sono (in ordine di frequenza):

1. sindrome da estensione o rotazione lombare con o senza sintomi irradiati.

In questa patologia i movimenti di estensione e rotazione sono la causa della sindrome. In particolare, l’appiattimento della colonna e una flessione anteriore riducono i sintomi dolorosi; nel ritorno dalla flessione il rachide viene esteso precocemente. Inoltre, anche la flessione laterale può essere fonte di dolore e in questi casi il movimento non è armonico.

2. sindrome da estensione lombare.

I pazienti affetti da tale sindrome presentano un’accentuazione della cifosi toracica, molto spesso associata ad un aumento della lordosi lombare, e un’antiversione del bacino. In questi casi, in particolare si verifica che il paziente ha più movimento in estensione che non in flessione.

Come nella classe sopra citata, i movimenti di flessione riducono i sintomi mentre i movimenti di estensione li aumentano; diversamente, invece, non sono presenti riduzioni o aumenti del dolore in movimenti di rotazione;

3. sindrome da rotazione lombare.

Questa sindrome non è molto frequente. Generalmente si presenta quando si effettuano cambi di posizione o si mantiene a lungo una postura; la si può anche associare a problematiche strutturali più complesse, come la scoliosi. In questa sindrome la rotazione del tronco dunque può risultare asimmetrica. In particolare, le persone che ne sono affette riportano un aumento di dolore nei movimenti di rotazione pura o di flessione laterale (che implica una parziale rotazione);

4. sindrome da rotazione-flessione lombare.
I pazienti che presentano tale sindrome hanno una colonna lombare appiattita associata ad una retroversione del bacino. La mobilità del bacino è ridotta sul piano sagittale soprattutto in antiversione.

Il dolore, che si manifesta in atteggiamenti di flessione e rotazione, è più acuto al mattino e di solito si affievolisce con il movimento o con il calore.

In questi pazienti la stazione eretta è fonte di sollievo, mentre atteggiamenti in flessione anteriore e laterale aumentano il dolore;

1. **sindrome da flessione lombare.**

In questo caso, i dolori sono associati al movimento di flessione che li accentua, mentre il movimento di estensione li riduce. I pazienti che presentano tale patologia possono riscontrare problemi acuti di ernia al disco. La colonna lombare appare piatta ma è più flessibile durante la flessione anteriore mentre ha una mobilità ridotta durante l’estensione. In questa situazione gli ischio-crurali possono essere rigidi ed accorciati.

Secondo l’autore australiano, il Low Back Pain è conseguenza di un'instabilità della regione lombare [18]. O’Sullivan riprende la nozione di instabilità da Panjabi[54], che la definisce come regione di lassità attorno alla “zona neutrale”, ovvero la posizione neutra del segmento spinale lombare. Questa regione caratterizzata da lassità tende ad aumentare in presenza di patologie inter-segmentali o degenerazioni discali e diminuisce grazie alle forze muscolari. Secondo Panjabi[54] dunque, la dimensione della zona neutrale dipende dall’interazione di tre tipi di elementi: passivi(dischi intervertebrali, articolazioni zigapofisali e legamenti), attivi(muscoli e tendini) e neurali(Sistema Nervoso Centrale e ramificazioni nervose). Secondo Bergmark[55] la stabilità del tratto lombare dipende da due sistemi: il "global muscle system" e il "local muscle system". Il primo sistema agisce indirettamente sulla colonna vertebrale, mentre il secondo agisce direttamente. La stabilità della colonna è dunque assicurata dalla coordinazione tra il sistema globale e il sistema locale. Pertanto, un paziente affetto da lombalgia è caratterizzato da una generale perdita della funzione muscolare con cambiamenti nel controllo nervoso che si traduce alterazioni dei processi di timing nelle risposte refllessogene, nell’equilibrio, nella co-contrazione e nella coordinazione intra-muscolare ed inter-muscolare. La classificazione, secondo O’ Sullivan, si basa sul meccanismo biomeccanico che ha portato al danno tissutale e sui movimenti che aggravano la condizione del paziente basandosi su una divisione in quadranti. D’altro canto però ci sono dei punti comuni: i pazienti generalmente presentano un ridotto controllo del movimento
nella zona neutrale associato ad un'incapacità di iniziare la co-contrazione del "local muscle system". Questi soggetti attuano delle strategie di compenso per movimenti che vanno al di fuori della zona neutrale soprattutto grazie al reclutamento del "global muscle system".

Sulla base di queste considerazioni, O'Sullivan definisce quattro sindromi (in ordine di maggiore frequenza):

6. "flexion pattern".

Il soggetto, affetto da questa sindrome, percepisce il dolore nei movimenti di flessione/rotazione anche ripetuti. In particolare, la sintomatologia si accentua nei movimenti di flessione anteriore e di conseguenza il soggetto manifesta un'incapacità di mantenere posture semiflesses. È frequente che i pazienti riportano una riduzione della curva lombare, già evidenziabile in posizione eretta che peggiora da seduto con una tendenza della pelvi alla retroversione. Il movimento di flessione è aumentato rispetto il normale ed è ridotto invece il movimento in estensione. Movimenti come lo squat, il sedersi con le ginocchia estese o l'alzarsi in piedi mostrano un'incapacità della persona nel mantenere la posizione neutra della colonna lombare con una tendenza alla retroversione pelvica.

7. "extension pattern".

Il soggetto riporta dolore dovuto a movimenti di estensione/rotazione anche ripetuti. I sintomi sono esacerbati in estensione e di solito viene riportato un aggravamento durante azioni che prevedono lo stare in piedi per molto tempo o alzare pesi sopra la testa. In posizione ortostatica la lordosi lombare è accentuata con la pelvi in antiversione. Movimenti di flessione anteriore rivelano la tendenza a conservare l'atteggiamento iperlordotico con una normalizzazione della curva verso la fine del movimento. Il ritorno alla posizione normale invece evidenzia un'accentuazione della lordosi lombare con aumento del dolore.

8. "lateral shift pattern".

Questi soggetti presentano uno spostamento laterale dei segmenti vertebrali tipicamente unidirezionale associato a dolore anch'esso unilaterale. Comunemente hanno difficoltà nell'eseguire movimenti di torsione in associazione con la flessione. In posizione eretta si presentano con la colonna lombare ridotta e con uno spostamento laterale del segmento vertebrale instabile. Questo spostamento aumenta quando si passa in appoggio monopodalico omolaterale alla deviazione. Durante il movimento e il cammino in particolare, invece, si evidenzia uno spostamento del corpo che avviene, non per mezzo del movimento delle pelvi, ma grazie allo spostamento torace. Questi soggetti inoltre presentano un forte tono muscolare nei muscoli ipsilaterali alla deviazione tra cui il multifido, gli erettori spinali ed il quadrato dei lombi e un'atrofia dei muscoli controlaterali.
Tale condizione è la più grave tra le quattro e si manifesta di frequente associata a traumi, dolore acuto, e disabilità funzionale. Il dolore acuto è esacerbato in ogni direzione di movimento, ciò comporta che il paziente riporta una difficoltà nel trovare delle posizioni che diano sollievo. A volte vengono riportati dei blocchi articolari dopo movimenti prolungati in flessione, estensione e rotazione. Inoltre, c'è molta difficoltà nel ricercare e mantenere la posizione lordotica neutra del rachide lombare. Spostamenti e rotazioni vertebrali possono essere notate in diversi movimenti della colonna accompagnati spesso da dolore “da pugnalata” e spasmi dei muscoli della schiena.

Secondo S. Colonna ogni catena miofasciale sottende un movimento specifico, quindi una disfunzione della catena rende tale movimento sintomatico [13].

Ad esempio, nella stazione eretta, le catene posteriori (rette o spirali) gestiscono eccentricamente il movimento di flessione del tronco; è logico, quindi, ricercare in queste catene la causa di un movimento sintomatico, sia in termini di dolore che di rigidità. Nel caso in cui risulta sintomatico il movimento di estensione, la causa andrà ricercata nelle catene anteriori che gestiscono il movimento eccentricamente. Invece, se è sintomatico un movimento di lateroflessione o rotazione la causa andrà ricercata primariamente nelle catene spirali. Infine, nel caso in cui il movimento sintomatico è di tipo soprattutto sagittale le catenerette saranno le prime imputate.

Il movimento del corpo raramente avviene su un solo piano, quindi è facile trovare associati piani diversi, ad esempio flessione e rotazione-inclinazione. Per ognuno di questi pattern si riscontra una alterazione della: postura statica; postura dinamica e attivazione muscolare. Sarà proprio l’alterata coordinazione muscolare a instaurare l’instabilità fonte del movimento disfunzionale. S. Colonna ha ripreso le classificazioni proposte da S. Sahrmann e da P.B. O'Sullivan ma ne cambia i presupposti.

Sindrome Flessoria / Sindrome Rotatoria Flessoria.

La sindrome flessoria, con o senza sintomi irradiati, si presenta nei soggetti che eseguono continue flessioni del tronco. Spesso può essere associata una sintomatologia discale strettamente legata alla flessione del rachide lombare. Posturalmente è presente un appiattimento
della lordosi lombare con una retroversione della pelvi. Durante la flessione è presente una maggiore flessibilità del tronco rispetto all’anca perché gli ischiocrurali e il grande gluteo sono corti e/o rigidi, mentre i muscoli estensori del tronco sono lunghi e/o deboli. La Sindrome Rotatoria Flessoria presenta caratteristiche pressoché simili alla sindrome flessoria ma il dolore viene esacerbato anche nei movimenti di rotazione (Figura 4).

Sindrome Estensoria/Sindrome Rotatoria Estensoria.

In questo caso il dolore può presentarsi irradiato ma senza una logica radicolare. In particolare, tale dolorabilità si manifesta soprattutto dopo inattività, ad esempio la mattina al risveglio; migliora con l’attività, ma può ripresentarsi al termine della stessa o dopo il riposo. Nel caso della sindrome rotatoria estensoria saranno le posizioni o movimenti di estensione e rotazione che scatenano o accentuano i sintomi. L’estensione è gestita dalle catene statico-dinamica anteriori e spirali anteriori. La retrazione di una catena spirale può indurre un alterato meccanismo di estensione-rotazione (Figura 5).

Sindrome Rotatoria.

La sindrome rotatoria raccoglie tutti i soggetti che presentano dolore al movimento di rotazione e/o lateroflessione. La rotazione è frequentemente dolente abbinata ad altri movimenti ed è raro trovarla isolata. Spesso per l’abbinamento biomeccanico, insito nella nostra colonna vertebrale, si ritrova la rotazione e/o la lateroflessione sintomatiche. La disfunzione primaria è legata ad una focalizzazione su una o due vertebre della maggior parte della rotazione del rachide, in tale modo alcuni segmenti saranno iper-mobili ed altri ipomobili. Il tipico dolore di questa sindrome non è intenso ma transitorio e si manifesta soprattutto durante i cambiamenti di
posizione. Radiologicamente è facile riscontrare degenerazione discale, osteoartrite e spondilolistesi con instabilità (Figura 6).

1. RIFLESSIONI CONCLUSIVE E NUOVE PROPOSTE

La complessità del LBP delineata nei paragrafi precedenti (§1.2,1.3) ha mostrato come quest’ultimo rappresenti una sintomatologia di origine multifattoriale, nelle cause e nei fattori di rischio, includendo numerose variabili non modificabili quali l’ereditarietà genetica, la storia personale, la cultura, lo stato sociale ed economico e variabili modificabili rappresentate in maniera cospicua dallo stile di vita, il comportamento, salute psicologica, stress, obesità, le credenze, il lavoro, e soprattutto l’attività fisica svolta (Figura 7).

Woolf A. [27] in uno studio rende noto come la prevalenza di LBP cresce all’aumentare dell’età, avendo il suo picco fra i 70-79 anni, per poi iniziare un leggero declino subito dopo (Figura 8). Una crescita esponenziale si evidenzia dopo i 30 anni, età in cui è probabile trovare una lauta proporzione di lavoratori e questo potrebbe rappresentare un importante fattore per lo sviluppo di LBP, soprattutto se consideriamo lavori di tipo manuale in cui viene richiesto un grande sforzo fisico.
Figura 8|Prevalenza di LBP, stratificata per età, sesso e localizzazione geografica. (WHO,2000) [27].

Un altro aspetto da considerare è il genere, in quanto si nota che la prevalenza è maggiore nella popolazione maschile, probabilmente più soggetta a lavori manuali,

rispetto a quella femminile ma ad oggi la letteratura non è concorde nell’assegnare al genere maschile il titolo di fattore di rischio per il LBP, soprattutto perché esistono studi che affermano il contrario, ovvero che il genere femminile detiene la maggiore prevalenza, fatto dovuto probabilmente al grande numero di gravidanze sostenute dalla popolazione femminile.

Alcuni studi affermano che la maggior parte dei LBP si risolve entro due settimane, ma in alcuni casi come quelli più acuti si incorre, spesso, nel rischio che tale sintomatologia si ripresenta dopo poco tempo. A tal riguardo, è stata stimata una ricorrenza del 20-44% entro un anno dal primo episodio ed una ricorrenza nell’arco della vita maggiore del 85% in soggetti lavoratori [62].

In molti casi, il LBP non si risolve mai del tutto e finisce per cronicizzarsi ed esacerbarsi.

A causa della sua multifattorialità il LBP risulta una “patologia” complessa per la quale è difficile determinare una precisa diagnosi della causa scatenante, di fatto quasi il 90% si presenta in forma idiopatica. Ciò comporta che anche per i maggiori professionisti sanitari diventa spesso un problema di difficile risoluzione. Purtroppo neanche le recenti tecnologie di imaging aiutano in tal senso, infatti si è notato che le immagini delle risonanze magnetiche sono debolmente correlate ai sintomi. Questo è emerso in uno studio trasversale condotto da Boden S.D. in cui si evidenzia il fatto che in un gruppo di persone asintomatiche, di 60 anni d’età, sottoposte a risonanza magnetica, il 36% presentava un’erniazione del disco, il 21% una stenosi spinale, e più del 90% presentava un disco degenerato o con protusioni [63]. Ciononostante le radiografie e le risonanze magnetiche continuano ad essere prescritte aumentando in maniera vertiginosa i costi per la sanità pubblica.

Da qui la necessità di trovare una classificazione idonea del LBP e di approfondire la ricerca su quest’ultimo e su tutte le variabili che possono influenzarlo, soprattutto quelle non ancora esplorate come l’influenza di un allenamento della respirazione sul LBP, per intervenire con il miglior approccio terapeutico in termini di costi-efficacia.
CAPITOLO 2. SISTEMA RESPIRATORIO E ANATOMIA DEI MUSCOLI DELLA RESPIRAZIONE

1. PANORAMICA DEL SISTEMA RESPIRATORIO

L’apparato respiratorio comprende: naso, cavità nasali e seni paranasali, faringe, laringe, trachea e condotti di passaggio quali bronchi e bronchioli (Figura 9). Quest’ultimi portano agli alveoli, le più piccole unità funzionali dei polmoni, dove avvengono gli scambi gassosi tra aria e sangue. Dal punto di vista funzionale l’apparato respiratorio si suddivide in due porzioni, una definita di conduzione, che si estende dall’ingresso delle cavità nasali fino ai più piccoli bronchioli situati nei polmoni; e l’altra respiratoria che comprende i bronchioli respiratori e i delicati sacchi alveolari, comunemente chiamati alveoli. Un’altra importante suddivisione del sistema respiratorio tende a distinguere il tratto respiratorio superiore da quello inferiore. Il tratto respiratorio superiore comprende le parti al di fuori della gabbia toracica, al contrario quello inferiore comprende le parti situate all’interno della stessa. Le funzioni espletate dal tratto superiore sono quelle di filtrazione, riscaldamento ed umidificazione dell’aria inspirata, che giunge al tratto inferiore raggiungendo i polmoni e gli alveoli polmonari solo dopo che la maggior parte degli agenti estranei e patogeni è stata rimossa [64].

In altre parole, come riportato da Martini, Timmons e Tallitsch, pionieri nello studio dell’anatomia umana, le funzioni che il sistema respiratorio assolve sono [64]:

1. fornire un’ampia area per gli scambi gassosi tra aria e sangue circolante;
2. condurre l’aria da e verso superfici polmonari di scambio;
3. proteggere le superfici respiratorie da disidratazione, sbalzi di temperatura e altre variazioni ambientali;
4. difendere l’apparato respiratorio stesso ed altri tessuti dall’invasione di microrganismi patogeni;
5. produrre i suoni implicati nel linguaggio, nel canto e nella comunicazione non verbale;
6. regolare il volume e la pressione del sangue, controllare il pH dei fluidi corporei.
Le sudette funzioni, sono svolte in stretta collaborazione con: il sistema linfatico, cardiovascolare, specifici muscoli scheletrici e il sistema nervoso. La gabbia toracica, formata da coste, sterno, vertebre toraciche e dai muscoli intercostali, ha la funzione di contenere e proteggere i polmoni e le strutture al suo interno, primo fra tutti il cuore. Il pavimento della gabbia toracica è costituito dal diaframma, muscolo che separa dalla cavità addominale.

Durante la respirazione, le strutture che circondano i polmoni sono mobilizzate. Ciò avviene poiché i polmoni, pur non essendo legati alla parete toracica da alcuna struttura fisica, aderiscono con forza a questa per la presenza di un sottile strato di liquido pleurico contenuto nello spazio pleurico [65].

Il liquido pleurico ha la funzione di lubrificare i foglietti pleurici parietale e viscerale, per agevolare un migliore scivolamento fra i due durante i movimenti respiratori. In particolare, possiede una funzione meccanica dovuta alla sua pressione interna negativa (-4mmHg), detta intrapleurica (P_{ipr}), grazie al quale viene assicurato l’accoppiamento meccanico tra polmone e parete toracica, mantenendo funzionalmente “incollate” le due strutture ed impedendo che si allontanino [64, 65].

Per comprendere come avviene un ciclo respiratorio, oltre alla P_{ipr}, dobbiamo prendere in considerazione altre due pressioni: la pressione atmosferica (P_{atm}, per convenzione considerata uguale a 0 mmHg) e la pressione alveolare (P_{alv}). Queste tre pressioni durante un ciclo respiratorio interagiscono fra di loro per permettere immissione e fuoriuscita d’aria dal sistema. Nello specifico avviene che prima dell’inspirazione, P_{alv} è uguale alla P_{atm}, ed essendoci equilibrio non vi è alcun flusso d’aria. Quando i muscoli inspiratori espandono il torace e di conseguenza i polmoni, la P_{ipr} si riduce da -4mmHg a -7mmHg (nella respirazione tranquilla fisiologica) e di conseguenza i polmoni seguendo il movimento di espansione del torace permettono alla P_{alv} di ridursi anch’essa, passando da 0 mmHg a -1mmHg, cosicché il gradiente pressorio creato tra ambiente (P_{atm}, uguale a 0 mmHg) e spazi alveolari (P_{alv}, uguale a -1mmHg) provoca l’ingresso di aria nei polmoni, il quale conclude fino al termine della contrazione dei muscoli inspiratori. Terminata l’inspirazione, il sistema polmone-torace non essendo più sottoposto alla forza applicata dai muscoli inspiratori, risente soltanto della sua capacità di ritorno elastico, detta anche compliance polmonare. La compliance polmonare, o forza di ritorno elastico, permette l’espulsione dell’aria immagazzinata nei polmoni portando la P_{alv} uguale a +1mmHg e garantendo un gradiente pressorio tra spazi alveolari e ambiente tale da permettere la fuoriuscita di aria dal sistema (Figura 10) [65,70].
Figure 10 | Schema dei gradienti pressori, durante il ciclo respiratorio, tra pressione atmosferica, alveolare e pleurica [70].

Naturamente bisogna evidenziare il fatto che questi valori pressori fanno riferimento ad una respirazione tranquilla, ma all’aumentare del fabbisogno di O$_2$ questi valori aumentano fino al livello richiesto dallo sforzo fisico e si adattano alle nuove esigenze metaboliche. La funzionalità respiratoria, è valutata misurando il volume di aria che il soggetto può inspirare ed espirare. Tale misurazione avviene tramite il tradizionale spirometro o lo pneumotacografo. Le frazioni del volume polmonare che si possono misurare sono (Figura 11) [65,70,71]:

1. Volume Corrente (VC): è il volume di aria inspirato ed espirato durante la respirazione normale (detta eupnea) ed è proporzionale al peso del corpo e variabile a seconda del sesso preso in considerazione, generalmente ammonta a circa 500mL.

2. Volume di Riserva Inspiratoria (VRI): è il volume di aria che può essere ancora inspirato, dopo un’inspirazione normale. Questa riserva viene utilizzata in emergenza durante attività come l’esercizio fisico, o azioni come tosse e starnuto. Il suo valore medio è di circa 3 L.
3. **Volume di Riserva Espiratoria (VRE):** è il volume di aria che può essere ancora espirato dopo una espirazione normale e richiede l’attivazione massimale dei muscoli espiratori. Viene utilizzato durante esercizio fisico o azioni quali lo starnutire ed il tossire. Il suo valore medio ammonta a circa 1,3 L.

4. **Volume Residuo (VR):** rappresenta l’ultima frazione del volume polmonare che non può essere espirata e che quindi rimane all’interno dei polmoni a causa della rigidità del torace e del fatto che a volumi minori i tratti più piccoli dell’albero bronchiale collassano su di loro chiudendosi ed intrapollandolo aria all’interno. Il suo valore medio varia da 1,2 a 1,5 L.

Sommando due o più volumi dei volumi descritti, vengono calcolate le capacità polmonari, altri valori sulla funzionalità respiratoria.

![Figura 11 | Rappresentazione grafica dei volumi e delle capacità polmonari](image)

**Figure 11 | Rappresentazione grafica dei volumi e delle capacità polmonari [71]**

Quattro sono le capacità polmonari che si possono misurare (Figura 11):

1. **Capacità Funzionale Residua (CFR):** è la somma del Volume di Riserva Espiratoria e del Volume Residuo ed ammonta a circa 2,5-3 L. Rappresenta il volume di aria presente all’interno dei polmoni al termine di un’espirazione normale e viene anche considerato il volume di riposo o di equilibrio del sistema respiratorio, determinato dalle sole forze di ritorno elastico del polmone e del torace.

2. **Capacità Inspiratoria (CI):** è la somma del Volume Corrente e del Volume di Riserva Inspiratoria ed ammonta a circa 3,5 L. È il volume di aria che può essere introdotto a partire dal volume di riposo (CFR) compiendo un’inspirazione massimale.
3. Capacità Vitale (CV): è la somma del Volume di Riserva Inspiratoria (VRI), del Volume Corrente (VC) e del Volume di Riserva Espiratoria (VRE) e con un ammontare di circa 5 L, rappresenta il massimo volume di aria che può essere mobilizzato dal sistema respiratorio.


Lo scopo della respirazione è quello di permettere da un lato, la diffusione dell’O$_2$, introdotta durante la respirazione negli alveoli, nel sangue dei capillari polmonari, per essere poi successivamente trasportato ai tessuti, dall’altro lato, di eliminare la CO$_2$, prodotta dai metabolismi delle cellule del corpo, nell’aria alveolare per poi riversarla al di fuori del sistema durante la fase di espirazione. Oramai si è certi che gli scambi gassosi, che avvengono attraverso la sottile membrana respiratoria alveolare, rispondono al meccanismo di diffusione passiva favorito dai gradienti di pressione dei gas che permettono il passaggio di O$_2$ nei capillari e di CO$_2$ negli alveoli (Figura 12) [65,70,71].

Figura 12 | Scambi gassosi di O$_2$ e CO$_2$ tra alveoli e sangue, e tra sistema circolatorio e tessuti periferici [71]

1. REGOLAZIONE DELLA RESPIRAZIONE
La respirazione è un fenomeno complesso che richiede l’interazione di tre sistemi quali il sistema nervoso, il sistema respiratorio, e i recettori chimici e nervosi [65]. Il sistema nervoso ha un ruolo fondamentale nella regolazione della respirazione volontario ed involontaria. Possiamo sintetizzare che il sistema di controllo della respirazione volontaria sia situato nella corteccia celebrale ed è stato dimostrato che attivi regioni corticali bilaterali molto diffuse che coinvolgono la corteccia motoria superiore, la corteccia motoria supplementare e la corteccia tre motoria. Recent studi hanno dimostrato una maggiore propensione di attività neuronale nell’emisfero sinistro. Oltre l’attivazione delle aree precedentemente citate si è notato l’intervento della corteccia sensomotoria infero-laterale. La sezione di queste aree non ha interrotto il ritmo respiratorio che più plausibilmente appartiene alle regioni corticali ma sappiamo che zone corticali citate in precedenza sono importanti nella modulazione del ritmo durante condizioni di ipossia, esercizio fisico, sonno e arousal. Per quanto riguarda il controllo sottocorticale, è quindi involontario della respirazione, è costituito da una rete neuronale situata nel tronco encefalico (Bulbo e ponte) che eccita ritmicamente i motoneuroni spinali dei muscoli inspiratori, determinando l’alternarsi delle fasi inspiratorie. I tre gruppi che formano questa rete neuronale sono, ad un livello più alto, il Gruppo Respiratorio Pontino (Centro pneumotassico), ad un livello più basso, il Gruppo Respiratorio Dorsale e il Gruppo Respiratorio Ventrale situati entrambi nel Bulbo (Figura 13) [65]. L’attività dei neuroni della rete è “automatica”, ma è regolata istante per istante da segnali provenienti dai centri superiori e da afferenze periferiche, che raggiungono la rete controllando ed adattando la respirazione ai
nuovi stimoli interni ed esterni. Il ciclo respiratorio, dal punto di vista nervoso, è suddiviso in tre fasi: la fase inspiratoria caratterizzata da un’attività ad inizio rapido nel nervo frenico e nel diaframma, crescendo fino ad un picco per poi terminare bruscamente; la fase post inspiratoria caratterizzata da un ritorno di una debole attività del diaframma con andamento decrescente che potrebbe servire a rallentare il ritorno elastico toraco-polmonare; la fase espiratoria attiva caratterizzata da assenza di attività del nervo frenetico e del diaframma, in contrasto ad un aumento di attività dei nervi e muscoli respiratori. Il centro generatore del ritmo sembra essere costituito in primis da i due gruppi bulbari, il Dorsale con attività stimolatrice dei motoneuroni dei muscoli inspiratori, in contrapposizione al Ventrale con attività stimolatrice dei motoneuroni espiratori; interessante notare che questi due gruppi hanno un’attività di mutuo controllo a feedback o definita anche di inibizione reciproca tale che l’alternanza respiratoria sia mantenuta nel tempo (Figura 13,14,15).

Figure 14 | Schematizzazione riassuntiva del controllo della ventilazione

Inoltre la respirazione e la sua regolazione dipendono anche da un altro sistema, nello specifico dall’interazione di due strutture recettoriali molto importanti: una nervosa (meccanica) e l’altra chimica (Figura 14,15) [72]. I recettori nervosi e chimici si trovano nel sistema nervoso centrale, nel sistema nervoso periferico, e negli organi. I recettori nervosi si situano nel tratto superiore respiratorio, nei muscoli respiratori, nei polmoni, e nei vasi sanguigni polmonari. Questi includono i
fusi neuromuscolari e recettori polmonari di stamamento, che rispondono ai cambiamenti dei volumi polmonari, primo fra tutti il Volume Corrente, e della pressione nella cavità toracica. La stimolazione di questi recettori determina un riflesso che provoca un aumento degli atti respiratori. Inoltre un gruppo di questi recettori, chiamati recettori J (fibre di tipo C), provocano dei riflessi immediati dal nervo vago, quali respiro corto, bradicardia, ipotensione vasodilatazione bronchiale e nasale. I chemocettori periferici, inclusi carotidei e aortici, sono i primi che risponde alle variazioni di PaO₂, ma modulano anche la concentrazione di PaCO₂ e il pH. La stimolazione di questi neuroni aumenta proporzionalmente in risposta ad un decremento di PaO₂ ed a un incremento di PaCO₂, con conseguente riduzione del pH. Gli impulsi di questi recettori vengono inviati al sistema nervoso centrale tramite il IX (glossofaringeo) e il X (vago) nervo cranico (Figura 15). In particolare i chemocettori carotidei sembrano rispondere con maggiore importanza ad una situazione ipossia causata da una iperventilazione e sembra che il nervo vago sia la via preferenziale di questi stimoli. Dalle recenti ricerche scientifiche sembra che i chemocettori aortici rispondono prevalentemente ai cambiamenti di saturazione ematica di O₂ (SpO₂) al contrario dei chemocettori carotidei che prediligono le variazioni di PaO₂ ma entrambi mediano le risposte di adattamento della respirazione dovute all’esercizio fisico e all’acclimatazione ad altitudini diverse.

2. I MUSCOLI DELLA RESPIRAZIONE

La ventilazione polmonare, comunemente conosciuta come respirazione, è un movimento fisico di aria verso l’interno dell’albero bronchiale e al di fuori di quest’ultimo.

La sua funzione principale è quella di fornire un’adeguata quantità di O₂ ai sacchi alveolari e provvedere ad una proporzionata espulsione di CO₂ all’esterno del sistema respiratorio per prevenire un accumulo di anidride carbonica, all’interno degli alveoli, ed assicurare l’assorbimento di O₂, all’interno del flusso ematico [64].

La ventilazione polmonare è assicurata dal sistema respiratorio, nervoso e circolatorio e in particolare dall’apparato muscolo-scheletrico. Sono i muscoli inspiratori, in primis, a permettere ai polmoni di incamerare aria ricca di O₂ e di eliminare la CO₂ dall’organismo grazie alla loro azione di

![Figure 15](image-url)
“pompa” che svolgono sull’apparato toraco-polmonare. In letteratura, tali muscoli respiratori sono suddivisi, secondo la funzione che svolgono, in due macro-categorie:

1. **Muscoli inspiratori** (diaframma, intercostali esterni, scaleni, sterno-cleido-mastoideo, dentato anteriore, piccolo pettorale, grande pettorale)

2. **Muscoli espiratori** (intercostali interni, retto e trasverso dell’addome, obliqui interni ed esterni)

Un’ulteriore classificazione proposta è quella fra muscoli respiratori principali e muscoli respiratori accessori. I muscoli respiratori principali sono i muscoli che intervengono in una situazione di respiro fisiologico tranquillo (eupnea), in altre parole, sono i muscoli inspiratori i quali devono aumentare il volume dell’apparato toraco-lombare attivamente, abbassando la base del torace e alzando la gabbia toracica per esprimere i polmoni. Al contrario, quando parliamo di respirazione fisiologica tranquilla, e quindi facciamo riferimento a circa 15 respiri al minuto, i muscoli espiratori non intervengono. Ciò accade a causa delle forze di ritorno elastico, che caratterizzano i polmoni e la gabbia toracica, tali da riportare il torace nella sua posizione iniziale [64,66,70]. Quando aumenta la ventilazione polmonare, per cause endogene e/o esogene, parliamo di iperpnea. In questa condizione l’organismo per permettere dei respiri più veloci e più profondi, chiama in causa una serie di muscoli che vengono definiti accessori per la loro caratteristica di essere subordinati ad una richiesta di ventilazione polmonare più elevate (Figura 16).

**Muscoli della respirazione**

![Schema grafico dei muscoli inspiratori ed espiratori coinvolti nella respirazione](image)

Figure 16 | Schema grafico dei muscoli inspiratori ed espiratori coinvolti nella respirazione [69]
Il diaframma separa la cavità toracica da quella addomino-pelvica ed è conosciuto come il principale muscolo inspiratorio. Si caratterizza per una struttura muscolo-tendinea molto sottile (2-4 mm) [66]. Nella parte inferiore possiede una forma a cupola concava che si colloca tra l’apparato viscerale, caudalmente, e tra i polmoni ed il cuore, cranialmente (Figura 17). All’apice della cupola si trova una struttura tendinea, o centro frenico, che presenta la forma di un trifoglio con una foglia centrale, una a destra e una a sinistra. Dalla parte centrale si irradiano fibre muscolari che si inseriscono perifericamente su diverse strutture come l’insersione lombare, costale e sternale. Convenzionalmente, il muscolo diaframma viene diviso in due componenti principali: una crurale ed una costale [67].

La componente crurale (o vertebrale), si inserisce sulla porzione antero-laterale delle prime tre vertebre lombari e sul legamento arcuato mediano, mentre la componente costale si inserisce sul processo xifoideo dello sterno e sul margine superiore ed interno delle ultime sei coste. A questo livello si inter-digita con il trasverso dell’addome creando un collegamento funzionale tra le due strutture [67].

La componente crurale, invece, è costituita da due grossi pilastri muscolo-tendinei che si ancorano sui corpi vertebrali e che sono formati da un fascio mediale, uno intermedio o accessorio ed uno laterale (Figura 18).

Il pilastro destro, più grosso e più lungo del sinistro, nella parte distale diventa un tendine piatto che si ancora sulla parete anteriore dei corpi vertebrali di L2 e L3, ed alle volte L4. Accanto al pilastro mediale è presente un altro pilastro, chiamato intermedio o accessorio, il quale termina con il suo tendine tra i corpi vertebrali di L1 e L2.
Il pilastro sinistro termina anch’esso con un tendine piatto, ma sui corpi vertebrali di L2 e L3 essendo più corto della sua controparte, ed è rintracciabile anche qui un pilastro intermedio e laterale. I due maggiori pilastri tendinei del diaframma formano

Figure 18 | Sezione coronale della cavità addominale che mette in risalto la struttura del diaframma e i suoi rapporti con la muscolatura della colonna vertebrale [69]

un arco tendineo di fronte al corpo vertebrale di T12, il Legamento Arcuato Mediano, attraversato dall’aorta (Figura 18).

I pilastri laterali si inseriscono a questo livello e si dividono in due robusti tendini: il Legamento Arcuato Medio (o arcata lombo-costale mediale), situato sopra lo Psoas e fa da ponte tra il corpo vertebrale di L1 e la sua apofisi trasversa; il Legamento Arcuato Laterale, situato sopra il Quadrato dei Lombi, che connette il processo trasverso di L1 all’apice della 12° costa [67].
Inoltre, risulta importante sottolineare il ruolo che queste strutture legamentose, apparentemente poco rilevanti, assumono nel collegamento tra la fascia toraco-lombare posteriormente e la fascia trasversale anteriormente, rappresentando una via di scambio preferenziale di informazioni di origine propriocettiva. Nel centro frenico passa la vena cava inferiore, all’interno di una grande apertura situata anteriormente e a destra, mentre a livello di T11 i due pilastri tendinei formano un’apertura attraverso cui passa l’esofago ed il nervo vago.

La superficie superiore del diaframma si fonde con la pleura polmonare, mentre la superficie inferiore si unisce con il peritoneo [70].

Rilevante, inoltre, è la funzione svolta dal legamento frenopericardico, il quale collega il diaframma al pericardio permettendo al cuore di rimanere in sede, adagiato sul diaframma [67]. Allo stesso tempo, tale legamento diviene il fulcro sul quale il diaframma si aggancia nel momento in cui deve distribuire la sua tensione contrattile lateralmente.

Il diaframma è innervato da due branche del nervo frenico che originano dal plesso cervicale e nello specifico dai nervi spinali C3, C4 e C5 con un contributo più marcato da parte di C4. Il diaframma è irrorato da vasi situati superiormente ed inferiormente ad esso. Tra quelli posti superiormente ci sono l’arteria frenopericardica e muscolofrenica, le quali costituiscono delle diramazioni della arteria toracica interna. Tra le seconde, ovvero quelle poste inferiormente, ci sono le arterie freniche superiori e piccole diramazioni delle arterie intercostali, ma il vaso più importante è l’arteria frenica inferiore che origina direttamente dall’aorta e che supporta il diaframma nelle sue attività funzionali (Figura 19) [68].

1. I MUSCOLI ADDOMINALI

I più importanti muscoli della espirazione sono i muscoli addominali, i quali si dividono partendo dallo strato più profondo in: trasverso dell’addome, obliqui interni, obliqui esterni e retto dell’addome. L’obiettivo di questi muscoli nella fase espiratoria è quello di aumentare la pressione intraddominale per permettere al diaframma di risalire il più possibile e agevolare lo svuotamento dei polmoni [13] (Figura 20).
Oltre la funzione respiratoria, i muscoli addominali svolgono anche una funzione di protezione per via riflessa (tossire, starnutire, vomitare, defecare, partorire, etc.), e in particolare di stabilizzazione del rachide lombare in statica, ma ancor di più in dinamica [13].

Il trasverso dell’addome è il muscolo addominale situato più in profondità nella parete addominale (Figura 21). Origina dalle superfici interne delle ultime sei coste inter-digitandosi con il muscolo diaframma e la fascia toraco-lombare, dai ¾ anteriori del margine interno della cresta iliaca e dal terzo laterale del legamento inguinale.

Posteriormente, invece, origina dalle vertebre lombari attraverso la fascia toraco-lombare. La sua inserzione si trova sulla linea alba, tramite un’ampia aponeurosis bilaminare, e sulla cresta pubica.

Il trasverso dell’addome è innervato dai nervi spinali da T7 a T12 e la direzione delle sue fibre muscolari è fondamentalmente orizzontale. Le funzioni principali che assolve questo muscolo sono: l’aumento di pressione intraddominale per mezzo di una contrazione bilaterale che determina un appiattimento della parete addominale [73,74], il supporto dei visceri intraddominali [75], la diminuzione dell’angolo infrasternale delle coste durante l’espirazione [76], la stabilizzazione del rachide e dell’articolazione sacroiliaca in collaborazione alla fascia toraco-lombare [77-80].

Quest’ultima funzione è supportata anche dal fatto che il trasverso dell’addome si attiva in anticipo rispetto ai movimenti che coinvolgono i muscoli appendicolari [81-82]. Le evidenze scientifiche affermano che un ritardo di attivazione di questo muscolo sembra essere una delle cause principali di lombalgia, proprio per la funzione stabilizzatrice che possiede sul rachide lombare [83]. Lo stesso Kapandji J.I., nei suoi studi afferma che la pressione intraddominale incrementata dal trasverso dell’addome, in collaborazione con il diaframma addominale e pelvico, determina una riduzione del 50% della pressione discale a livello di D12-L1, del 30% a livello lombosacrale ed una riduzione di tensione dei muscoli spinali del 55%[84].

L’obliquo interno è il secondo muscolo più profondo dell’addome (Figura 22). Si colloca in una posizione più superficiale rispetto al trasverso dell’addome e più profonda rispetto all’obliquo esterno ed al retto dell’addome ed ha la sua innervazione in T7-T12.

Possiamo suddividere tale muscolo in tre componenti a seconda della posizione delle sue fibre, della loro inserzione e della loro direzione.

Le fibre antero-inferiori originano dai 2/3 laterali del legamento inguinale e dalla
cresta iliaca in una piccola regione vicino alla SIAS (Spina Iliaca Antero Superiore), e si inseriscono insieme al trasverso sulla cresta pubica, sulla parte mediana della linea pettinea e sulla linea alba tramite un’aponeurosi. Le sue fibre decorrono nella regione inferiore parallele a quelle del trasverso [85] e svolgono la funzione di comprimere e sostenere i visceri addominali inferiori e di stabilizzare l’articolazione sacroiliaca proprio come il trasverso [86].

Le fibre antero-superiori originano dal terzo anteriore della linea intermedia della cresta iliaca e fascia toraco-lombare, inserendosi anch’esse sulla linea alba tramite aponeurosi presentano un decorso obliquo verso l’alto e medialmente.

Come le fibre antero-inferiori, svolgono funzioni di sostegno e compressione dei visceri, coadiuvano il movimento di flessione del rachide lombare e gli atti respiratori. In aggiunta, però, svolgono un’altra rilevante funzione, ovvero, quella di torsione del tronco o del bacino, a seconda di quale fra i due venga considerato come punto fisso. Se consideriamo come punto fisso il bacino, l’obliquo interno destro ruoterà il torace in senso orario, mentre l’obliquo sinistro lo ruoterà in senso antiorario.

Se invece consideriamo il torace come punto fisso, l’obliquo interno destro ruoterà il bacino in senso antiorario e la sua controparte in senso orario.

Le fibre laterali dell’obliquo interno originano dal terzo medio della linea mediana della cresta iliaca e fascia toraco-lombare inserendosi sui margini inferiori delle ultime tre coste (X, XI, XII) e sulla linea alba tramite un’aponeurosi. Queste fibre hanno un decorso obliquo verso l’alto e mediamente più verticale rispetto alle fibre anteriori. Contraendosi bilateralmente flettono la colonna avvicinando lo sterno al pube, invece, agendo unilateralemente flettono lateralmente la colonna avvicinando il torace alle creste iliache [87] ed in sinergia con le fibre dell’obliquo esterno controlaterale ruotano la colonna [73,88]. Inoltre inserendosi sulla fascia toraco-lombare assolve il ruolo di importante stabilizzatore del rachide lombare della colonna [55].

L’obliquo esterno, secondo muscolo più superficiale dell’addome, possiede la sua innervazione in T5-T12 e, come per l’obliquo interno, può essere suddiviso in una componente anteriore ed una laterale in base all’inserzione e direzione delle fibre (Figura 23). Le fibre anteriori dell’obliquo esterno originano dalla V all’VIII costa con inter-digitazioni con il gran dentato e si inseriscono sulla linea alba con un’aponeurosi. La direzione delle fibre anteriori è obliqua verso il basso e medialmente (prevalentemente le fibre più craniali) assolvendo le funzioni di flessione del rachide, di sostegno al pacchetto viscerale ed aiutano nella respirazione se si contraggono bilateralmente.

Invece, se la contrazione avviene unilateralmente, l’obliquo esterno partecipa alla torsione del busto. Le fibre laterali dell’obliquo esterno originano dalla
superficie esterna della IX costa con inter-digitazioni comuni al gran dentato, e dalle superfici esterne della X, XI e XII costa con inter-digitazioni comuni al gran dorsale, inserendosi sul tubercolo pubico e sul margine esterno della metà anteriore della cresta iliaca. Le fibre hanno direzione caudale e mediale più marcate rispetto alle fibre anteriori dell’obliquo esterno. Le funzioni svolte da queste fibre sono di flessione del rachide, più marcata nella componente lombare, e di retroversione del bacino [89]. Se attivate unilateralmente flettono lateralmente il rachide avvicinando il torace alla cresta iliaca o comportano una torsione del torace o del bacino a seconda di quale sia fra i due il punto fisso, come precedentemente descritto per l’obliquo interno. È di notevole rilevanza considerare come una debolezza di questi muscoli possa ridurre l’efficienza respiratoria, il sostegno fornito al pacchetto viscerale e la stabilità del rachide lombare.

Il muscolo più superficiale fra i muscoli della parete addominale è senza dubbio il retto dell’addome il quale possiede innervazione in T5-T12 così come per l’obliquo esterno (Figura 24). Il retto dell’addome origina dalla cresta e sinfisi pubica e si inserisce sulle cartilagini costali di V, VI, VII costa e processo xifoideo dello sterno con un andamento prettamente verticale delle sue fibre muscolari. Questo muscolo permette, inoltre, la la flessione del rachide in avanti avvicinando il tronco al bacino sul piano sagittale, o il contrario, nel caso in cui il punto fisso sia il torace. Infine, alcuni studi hanno dimostrato che il retto dell’addome partecipa attivamente alla meccanica respiratoria in caso di attività fisica intensa [90], ma non interviene nell’aumento di pressione intraddominale e quindi nella stabilizzazione della componente lombare del rachide [91].

2.3.3 I MUSCOLI ACCESSORI DELLA RESPIRAZIONE

Figure 24 | Visione analitica del muscolo retto dell’addome [92]
I muscoli accessori della respirazione sono quei muscoli che intervengono in ausilio alle aumentate richieste ventilatorie (iperpnea) e ciò accade poiché il sistema passivo di forze di ritorno elastico dei polmoni non soddisfa più le richieste di aumento di velocità e profondità del respiro. I principali muscoli accessori della respirazione sono: lo sterno-cleido-mastoideo, il dentato anteriore, il piccolo pettorale, gli scaleni, gli intercostali esterni i quali contribuiscono alle fasi di inspirazione. Al contrario, i muscoli trasverso del torace, intercostali interni, trasverso dell’addome, retto e obliqui dell’addome cooperano durante le fasi di espirazione comprimendo il contenuto addominale e coadiuvano la risalita del diaframma [64]. Per quanto riguarda la fisiologia articolare di questi muscoli la Tabella 1 ne definisce in maniera chiara e sintetica origine, inserzione, innervazione ed azione muscolare.

Tabella 1 | Schematizzazione dell’origine, inserzione, azione ed innervazione dei muscoli accessori della respirazione [64]

<table>
<thead>
<tr>
<th>Muscolo Accessorio</th>
<th>Origine</th>
<th>Azione</th>
<th>Innervazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterno-cleido-mastoideo</td>
<td>Fascia superiore della prima costa</td>
<td>Ampliamento delle coste e flessione del collo</td>
<td>Nervi spinali cervicali</td>
</tr>
<tr>
<td>Dentato anteriore</td>
<td>Fascia superiore della seconda costa</td>
<td>Spessore delle coste e flessione del collo</td>
<td>Nervi spinali cervicali</td>
</tr>
<tr>
<td>Piccolo pettorale</td>
<td>Fascia superiore della terza costa</td>
<td>Spessore delle coste e flessione del collo</td>
<td>Nervi spinali cervicali</td>
</tr>
<tr>
<td>Scaleni</td>
<td>Fascia superiore della quarta costa</td>
<td>Spessore delle coste e flessione del collo</td>
<td>Nervi spinali cervicali</td>
</tr>
<tr>
<td>Intercostali interni</td>
<td>Fascia superiore della quinta costa</td>
<td>Spessore delle coste e flessione del collo</td>
<td>Nervi spinali cervicali</td>
</tr>
<tr>
<td>Trasverso del torace</td>
<td>Fascia superiore della sesta costa</td>
<td>Spessore delle coste e flessione del collo</td>
<td>Nervi spinali cervicali</td>
</tr>
<tr>
<td>Scaleni</td>
<td>Fascia superiore della settima costa</td>
<td>Spessore delle coste e flessione del collo</td>
<td>Nervi spinali cervicali</td>
</tr>
<tr>
<td>Intercostali interni</td>
<td>Fascia superiore della ottava costa</td>
<td>Spessore delle coste e flessione del collo</td>
<td>Nervi spinali cervicali</td>
</tr>
<tr>
<td>Trasverso del torace</td>
<td>Fascia superiore della nona costa</td>
<td>Spessore delle coste e flessione del collo</td>
<td>Nervi spinali cervicali</td>
</tr>
<tr>
<td>Scaleni</td>
<td>Fascia superiore della decima costa</td>
<td>Spessore delle coste e flessione del collo</td>
<td>Nervi spinali cervicali</td>
</tr>
<tr>
<td>Intercostali interni</td>
<td>Fascia superiore della undicesima costa</td>
<td>Spessore delle coste e flessione del collo</td>
<td>Nervi spinali cervicali</td>
</tr>
<tr>
<td>Trasverso del torace</td>
<td>Fascia superiore della dodicesima costa</td>
<td>Spessore delle coste e flessione del collo</td>
<td>Nervi spinali cervicali</td>
</tr>
</tbody>
</table>

2. MECCANICA DELLA RESPIRAZIONE

Il presupposto fondamentale per la meccanica respiratoria sono le variazioni del volume toracico. Tali variazioni sono provocate dall’azione di muscoli che originano o si inseriscono sulla gabbia toracica o che indirettamente coadiuvano questa azione stabilizzando isometricamente le articolazioni, a monte o a valle, creando punti fissi di trazione muscolare (Figura 25). Prima di entrare nello specifico della meccanica respiratoria è utile comprendere due diversi modelli di respirazione che differiscono per l’intensità che caratterizza quest’ultima a seconda che la fase respiratoria avvenga passivamente o attivamente: l’eupnea o iperpnea [64].
Nell’eupnea siamo di fronte ad una respirazione tranquilla nella quale l’inspirazione è un processo attivo che richiede la contrazione muscolare, e l’espirazione è un processo passivo che utilizza lo stiramento delle fibre elastiche. Quest’ultime sono presenti all’interno dei polmoni e dei muscoli che antagonizzano l’espansione della gabbia toracica per permettere alla stessa, a termine dell’inspirazione, di tornare nella sua posizione di partenza prima che avvenga l’inspirazione successiva.

Nello specifico l’eupnea si realizza attraverso due tipi di respirazione definite rispettivamente diaframmatica o respirazione profonda, e costale o respirazione superficiale.

La respirazione diaframmatica, o anche definita respirazione profonda, utilizza la contrazione del diaframma per aumentare il volume del torace permettendo l’ingresso di aria nei polmoni; attraverso il suo rilassamento, invece, favorisce l’espulsione dell’aria dai polmoni utilizzando le forze di ritorno elastico che caratterizzano quest’ultimi.

La respirazione costale, o anche definita respirazione superficiale, utilizza l’aumento del diametro longitudinale, sagittale e trasverso della gabbia toracica per richiamare aria all’interno dei polmoni. L’aumento di questi assi, provocato prevalentemente dalla contrazione dei muscoli respiratori, termina quando tali muscoli si rilassano e la gabbia toracica torna alla sua posizione iniziale passivamente e l’aria fuoriesce dai polmoni. Tale respirazione si riscontra maggiormente: in soggetti anziani a causa della scarsa tonicità del diaframma dovuto ai processi di invecchiamento; negli obesi a causa dell’aumento del volume del pacchetto viscerale che non permette al diaframma di spostarsi caudamente; e in donne in gravidanza per via del progressivo aumento delle dimensioni dell’utero che si spinge cranialmente e sposta a sua volta i visceri contro il diaframma bloccandolo e rendendo la respirazione superficiale.

Al contrario dell’eupnea, l’iperpnea è caratterizzata da processi attivi durante l’inspirazione ed espirazione tanto che viene definita anche respirazione forzata. Nelle fasi di inspirazione si ha una sinergia tra il diaframma e i muscoli accessori, nell’aumentare la profondità e velocità del respiro. Tale processo è identico per l’espirazione che vede coinvolti attivamente e sinergicamente i muscoli della espirazione, addominali in primis, i quali aumentando la pressione intraddominale spingono il diaframma verso l’alto coadiuvati dagli intercostali interni i quali inducono una rapida riduzione degli
assi della gabbia toracica [64].

**Figure 25 |Muscoli della respirazione e direzione del proprio vettore di forza[70]**

Sulla base di questa analisi è chiaro che le due fasi della respirazione dipendono dal ciclico aumentare e ridursi del volume, della capacità toracica, e dei tre diametri della cavità toracica.

Nello specifico durante un’inspirazione tranquilla, il diaframma ancorandosi sulle sue inserzioni crurali e costali tira in basso il centro frenico e di conseguenza i polmoni. In questo modo permettono alla pressione intra-alveolare di diminuire e di iniziare a introdurre aria. Questo non è l’unico meccanismo con il quale il diaframma permette l’inspirazione, infatti, spostandosi verso il basso incontra il pacchetto viscerale che offre una resistenza tale che il diaframma, facendo punto fisso sul centro frenico, sposta le sue inserzioni costo-sternali cranialmente. Ciò determina un aumento del diametro longitudinale a causa dell’abbassamento del centro frenico, del diametro sagittale per l’elevarsi delle coste superiori e dello sterno e del diametro trasverso per l’elevarsi delle coste inferiori.

Per la capacità di aumentare da solo i tre diametri della cavità toracica e di contribuire all’ingresso di aria nei polmoni del 75%, Kapandji J.I. ritiene che il diaframma sia un muscolo essenziale e autonomo della meccanica respiratoria [84]. Sempre in condizioni di eutnea, gli intercostali esterni contribuiscono del 25% all’inspirazione.

Nelle condizioni di iperpnea, invece, il diaframma e gli intercostali esterni, nonostante un aumento della loro attività contrattile, non riescono a soddisfare a pieno le richieste di velocità e frequenza del respiro. Per questo motivo entrano in azione, nella meccanica inspiratoria, anche i muscoli accessori dell’inspirazione che coadiuvano l’inspirazione aumentando sinergicamente i tre diametri della cavità toracica.

Durante l’eutnea, la cavità toracica utilizza le forze di ritorno elastico di polmoni, gabbia toracica, addominali ed anche del pavimento pelvico per favorire passivamente la fuoriuscita di aria dal sistema respiratorio. Invece, quando l’espirazione diviene forzata, i muscoli accessori della espirazione addominali e intercostali interni, comprimono attivamente la gabbia toracica e aumentano la pressione intraddominale.

Quest’ultima comprime i visceri sul diaframma e lo spinge con velocità cranialmente favorendo l’espulsione di aria dai polmoni, riducendo i tre diametri toracici principali e favorendo la ripresa del ciclo respiratorio.
Per concludere, dopo aver visto i principali meccanismi tramite cui l’organismo permette l’ingresso e la fuoriuscita di aria dal sistema respiratorio, a seconda di quale sia la richiesta metabolica in quel preciso istante, è importante approfondire i movimenti delle coste che permettono l’aumento dei tre diametri della gabbia toracica. Kapandji [84] definisce due tipi di movimenti che caratterizzano le coste e la gabbia toracica: a “manico di secchio” per quanto riguarda le coste inferiori che permette l’aumento del diametro trasverso; a “braccio di pompa” per quanto riguarda le coste superiori provocando una aumento del diametro sagittale. La risultante di questi due movimenti, appena descritti, è la risposta meccanica che l’organismo attiva per soddisfare le richieste di un’aumentata ventilazione polmonare (Figura 26, 27).

Figure 26 | visione trasversale e rappresentazione grafica degli assi di movimento delle coste inferiori e superiori, e loro reciproco ruolo nell’aumento del diametro trasverso e del diametro sagittale [84]

Figure 27 | Rappresentazione grafica dei movimenti delle coste secondo Kapandji e loro combinazione [84]
3.1 DESCRIZIONE E FUNZIONALITÀ SPIROTIGER®

Lo SpiroTiger® è un sistema meccanico che permette di svolgere delle sedute di allenamento che coinvolgono globalmente tutti i muscoli della respirazione senza che vengano sovraccaricati altri sistemi quali quello cardiovascolare o il sistema locomotore [93]. Questo sistema di allenamento viene definito in letteratura come “RMET” acronimo di “Respiratory Muscle Endurance Training” e viene utilizzato da non pochi anni nel miglioramento della condizione e della ventilazione del soggetto affetto da Bronco Pneumopatia Cronico-Ostruttiva (BPCO), asma, enfisema e fibrosi cistica, contro l’affanno, il russamento e le apnee notturne nel miglioramento della sintomatologia algica al livello del rachide lombare. Quest’ultimo aspetto dell’utilizzo dello SpiroTiger® è stato ancora poco indagato ma gli studi sono in rapido aumento vista la positiva esperienza empirica che offre alla popolazione lo strumento. Andando nello specifico dello strumento lo SpiroTiger® è composto da un boccaglio collegato ad una sacca tramite un tubo e a una manopola portatile. Il tubo collegato alla sacca per il riciclo dell’aria contiene una valvola che, variando la sua posizione in relazione ai flussi di aria in entrata ed in uscita effettua un monitoraggio di questi ultimi (Figura 28). All’interno della manopola si trova un software, che riceve i dati forniti dallo spostamento della valvola in tempo reale e li elabora sul momento, cosicché in base ai valori precedentemente impostati, come volume della sacca e frequenza respiratoria,
invia dei feedback visivi ed uditivi sull’effettivo svolgimento dell’allenamento e interrompe l’allenamento nel caso in cui un numero superiore a quattro cicli respiratori non venga effettuato nella maniera predefinita all’interno di determinati parametri. Lo strumento inoltre è in grado di registrare ogni singolo allenamento per tenere nota dei miglioramenti e degli allenamenti precedentemente svolti per evitare di compiere degli errori nell’impostazione del successivo allenamento. Per via della semplicità dell’utilizzo di questo strumento, l’allenamento di coordinazione e resistenza dei muscoli respiratori può essere svolto anche da soggetti giovani e da anziani migliorando la loro capacità ventilatoria ed evitano che un sistema di ventilazione polmonare de-allenato provochi una limitazione dei livelli di condizione e prestazione fisica. Inoltre esistono diversi modelli di SpiroTiger® ognuno specifico per una tipologia di popolazione e di obiettivi: SpiroTiger® Go, SpiroTiger® Smart, SpiroTiger® Medical, SpiroTiger® Sport. I due più utilizzati sono lo SpiroTiger® Sport per l’allenamento dei muscoli respiratori in atleti per lo più ciclisti, maratoneti e giocatori di rugby, e lo SpiroTiger® Medical adatto ad una popolazione comune e con in corso patologie o problematiche dell’albero respiratorio. Ad ogni modo i vari modelli di SpiroTiger® hanno delle caratteristiche comuni quali:

1. la possibilità di registrare delle impostazioni personali predefinite
2. la possibilità di cambiare la sacca di respirazione
3. la possibilità di cambiare la frequenza respiratoria
4. il ritmo respiratorio viene rappresentato da un cursore luminoso e da brevi segnali acustici
5. in presenza di errori nell’allenamento lo strumento produce segnalazioni ottiche ed acustiche
6. l’utente viene coadiuvato durante l’allenamento da indicazioni come ad esempio “respirare più lentamente” o viceversa “respirare più velocemente”
La grandezza della sacca di respirazione viene determinata a partire dalla Capacità Vitale del soggetto moltiplicata per 0,5. In base al volume calcolato bisogna scegliere la sacca della misura immediatamente superiore con la possibilità di ridurre di quanto serve il volume in eccesso tramite una molletta di grandi dimensioni. Esistono delle formule, con delle caratteristiche di validità, indicate dall’azienda dello SpiroTiger® per calcolare il volume della sacca a partire dalla Capacità Vitale(CV) e dalla Massima Ventilazione Volontaria(MVV) e sono le seguenti[93]:

1. “Determinazione della capacità vitale (CV)

La capacità vitale può essere determinata con una spirometria, oppure usando le formule seguenti. Con la capacità vitale si può calcolare il volume della sacca di respirazione.

\[
\begin{align*}
CV & \text{ Uomo } = (6.103* A) - (0.028* E) - 4.654 \text{ [Litri]} \\
CV & \text{ Donna } = (4.664* A) - (0.024* E) - 3.284 \text{ [Litri]}
\end{align*}
\]

\[ A = \text{ Altezza, espressa in metri} \]

\[ E = \text{Età, espressa in anni} \]

2. “Determinazione della ventilazione volontaria massima (MVV)

\[
\begin{align*}
MVV & \text{ Uomo } = (119.3* A) - (0.816* E) - 37.949 \text{ [Litri /min.]} \\
MVV & \text{ Donna } = (84.2* A) - (0.685* E) - 4.868 \text{ [Litri /min.]} 
\end{align*}
\]

\[ G = \text{ Altezza, espressa in metri} \]

\[ A = \text{ Età, espressa in anni} \]

3. “Ambito di validità delle formule di CV e di MVV:

\[ \text{Uomini: Altezza da } 1.40 \text{ m fino a } 2.10 \text{ m} \]

\[ \text{Donne: Altezza da } 1.45 \text{ m fino a } 1.80 \text{ m} \]

\[ \text{Età: 18 - 80 anni (da 18 a 25 anni, inserire per l’età il valore 25)} \]
Una volta calcolato il volume della sacca respiratoria è possibile selezionare successivamente la frequenza respiratoria target dell’allenamento e la durata di quest’ultimo svolgendolo anche in completa autonomia da 1 a 30 minuti per 2 o 3 volte alla settimana a seconda degli obiettivi da perseguire.

3.2 l’iperpnea isocapnica

Lo SpiroTiger® è un sistema di allenamento della muscolatura respiratoria definito RMET e si basa sull’intensità, la durata, il volume e la frequenza alla quale portiamo il nostro sistema respiratorio a lavorare ed è un apparecchio nato nei laboratori di fisiologia del Politecnico di Zurigo ad opera del Prof. Urs Boutellier a seguito dei suoi studi per l’allenamento finalizzato e specifico dei muscoli respiratori in uno stato di iperpnea-isocapnica. Come scritto precedentemente lo SpiroTiger® è uno strumento sicuro che non sovraccarica il sistema cardiovascolare e l’apparato locomotore. Questo perché l’attrezzo è capace di sviluppare un’iperpnea isocapnica. Un’iperpnea, come descritto in precedenza, è l’aumento di frequenza e profondità del respiro a causa di una maggiore richiesta di O₂ dall’organismo in seguito, ad esempio, ad uno sforzo muscolare particolarmente intenso o prolungato nel tempo. Quando non c’è la necessità di una maggiore richiesta di O₂ dall’organismo ma comunque aumentiamo la frequenza e profondità degli atti respiratori il risultato sarebbe una ventilazione maggiore rispetto a quella giustificata da un’esigenza fisiologica, che viene definita iperventilazione, e provocherebbe l’alterarsi del fisiologico rapporto tra O₂ e CO₂ con un aumento del primo e una diminuzione del secondo che corrisponde ad un’alcalosi respiratoria, ovvero un aumento del pH corporeo dovuto ad una diminuzione della CO₂. La caratteristica principale dello SpiroTiger® è che non permette di andare in iperventilazione grazie alla capacità dello strumento di realizzare l’isocapnia, ovvero di mantenere il rapporto tra O₂ e CO₂ fisiologico, e prevenire l’insorgenza di capogiri, vertigini, nausea, mal di testa propri di una iperventilazione. Quando il soggetto espira
ed inspira all’interno dello SpiroTiger® i dati forniti dallo spostamento della valvola all’interno vengono inviati al software che controlla l’effettiva realizzazione dell’iperpnea isocapnica. Uno dei più importanti limiti di una ginnastica respiratoria soprattutto con soggetti molto anziani è proprio il fatto che questa eccessiva ossigenazione ed eliminazione di anidride carbonica provoca capogiri e vertigini nelle persone al contrario lo SpiroTiger® risolve questo problema monitorando il rapporto fra i due mantenendolo costante senza che il soggetto incorra a capogiri che potrebbero creare delle cadute, fattori di rischio indiscutibili per le fratture di femore e polso nell’anziano.

1. rmct: la ginnastica del respiro ed evidenze scientifiche

La letteratura scientifica negli ultimi anni sta approfondendo il ruolo e l’importanza che un allenamento di resistenza dei muscoli respiratori (RMET 4 ) ha nei confronti di atleti, nell’aumentare le loro prestazioni, e di soggetti con problemmatiche quali la BPCO, asma, enfisema, cervicalgia cronica, fibrosi cistica e lombalgia, nel ridurre la sintomatologia e la

---

4 Acronimo inglese che sta per “Respiratory Muscle Endurance Training”
limitazione indotta da queste patologie. Con un occhio di riguardo all’aspetto prestativo le recenti ricerche scientifiche hanno attribuito al RMET il merito di migliorare le prestazioni in diverse attività sportive quali il ciclismo, la corsa, ed il canottaggio [94], le quali sono attività in cui è richiesta un’elevata “prestazione respiratoria” dovuta allo sviluppo di un consumo di ossigeno che rasenta il livello massimale esprimibile dall’atleta. È stato evidenziato dalla letteratura scientifica che il RMET provoca dei cambiamenti nella funzione polmonare, aumentando la Capacità Vitale (CV) e diminuendo il Volume Residuo [96]. Un recente studio condotto da Lemaitre Frédéric nel 2013 [95] ha approfondito come il RMET influenzi le prestazioni di nuotatori agonisti, dividendoli in due gruppi, uno di controllo che svolgeva i normali allenamenti in acqua e un altro sperimentale che prima di ogni seduta in acqua svolgeva a secco RMET con l’ausilio dello SpiroTiger®. Questo studio è stato condotto per otto settimane, periodo in cui il gruppo sperimentale svolgeva sedute di RMET di trenta minuti per cinque giorni alla settimana. Al termine dello studio il gruppo sperimentale ha mostrato risultati migliori e statisticamente significativi rispetto al gruppo di controllo in Capacità Vitale Forzata (CVF), Massima Ventilazione Volontaria (MVV), espansione del torace e nei tempi di gara sui 50m e 200m. Altri risultati positivi sono stati ottenuti in valori quali la massima forza inspiratoria ed espiratoria che sono aumentate notevolmente (Figura 29) e la percezione di dispnea e fatica che sono diminuite (Figura 30). Una review del 2015 [97] ha analizzato cinque studi che comprendevano l’utilizzo dello SpiroTiger®: solo uno studio riguardava la BPCO [98], e quattro studi riguardavano la Fibrosi Cistica [99-102]. L’obiettivo della review era di stimare ed analizzare i risultati di questi studi in termini di miglioramento della condizione fisica generale, della condizione fisica dei muscoli respiratori, della qualità della vita e di parametri respiratori, nello specifico il volume espiratorio forzato in 1 secondo (VEMS o FEV1). Le conclusioni a cui è arrivata questa review sono positive ma ancora conflittuali per via dei pochi studi analizzati e presenti in letteratura in quel periodo. Fatta questa importante premessa si è osservato, in soli due studi fra quelli inclusi in questa review, dopo RMET con SpiroTiger® in soggetti con Fibrosi Cistica, un miglioramento della FEV1 del 13% dopo quattro
settmanee [102] e del 5,4% dopo un anno di allenamento [99]. In due studi su cinque è stato riscontrato un miglioramento della massima pressione espiratoria [98,101] mentre solo in uno è migliorata la massima pressione inspiratoria [101]. Nell’unico studio sulla BPCO è stato misurato un incremento del 7% della MVV nel gruppo che ha utilizzato lo SpiroTiger® in confronto al gruppo di controllo che ha percepito un incremento del 5% ma il risultato più evidente è stato l’incremento del VO2max nel gruppo sperimentale di 2,5 ml/kg/min rispetto al gruppo di controllo che ha registrato una regressione pari a 0,3 ml/kg/min [98]. In uno studio sulla Fibrosi Cistica è stato notato che lo SpiroTiger® aiuta nell’eliminare l’espettorato e nel ridurre la tosse e la dispnea dopo esercizio fisico [99]. In due studi in particolare la review ha sottolineato che l’utilizzo dello SpiroTiger® migliora la resistenza dei muscoli respiratori calcolata tramite il tempo totale in cui veniva mantenuta una respirazione sostenuta [98,100], con miglioramento del 258% in uno dei due studi in particolare [98], e negli stessi due studi sono stati ottenuti ottimi risultati nel 6 Minute Walking Test (6MWT) in soggetti che svolgevano RMET con SpiroTiger® [98,100]. In quattro dei cinque studi analizzati da questa review i soggetti hanno percepito una migliore condizione fisica dopo utilizzo dello SpiroTiger® [98,99,101,102] e solo in uno studio non sono stati registrati miglioramenti nella qualità della vita [100]. Naturalmente gli studi in ambito patologico sul RMET al giorno d’oggi sono ancora pochi e alcuni non concordi fra loro, ma i risultati ottenuti in questi pochi studi predicono che in futuro potrà essere confermato l’importante ruolo che possiede il RMET nel migliorare la funzionalità dei
muscoli respiratori in atleti e non atleti. Infatti nello stesso anno della review precedentemente descritta, l’Università di Ferrara ha pubblicato un interessante articolo in cui vengono analizzati gli effetti indotti dall’utilizzo dello SpiroTiger® 10 minuti due volte al giorno, per sette giorni alla settimana per un periodo di 4 settimane, ed è stato evidenziato un miglioramento in parametri quali la massima pressione inspiratoria, tempo totale di esercizio fisico limitato dai sintomi, 6’ Walking Test, e qualità della vita, quest’ultima misurata tramite il St George Respiratory Questionnaire. Andando nello specifico di questo studio, dopo l’utilizzo dello SpiroTiger®, sono migliorati i patterns ventilatori durante test di resistenza limitato dai sintomi registrando, a parità di intensità di lavoro, una ventilazione e una frequenza respiratoria inferiore, un volume corrente maggiore e una riduzione della desaturazione di O₂, dell’angolo di fase (PhA5) e punteggio sulla scala di Borg [103] (Figura 31). Infine lo studio conclude dicendo che il RMET si è dimostrato efficace nel migliorare la forza dei muscoli respiratori, i patterns ventilatori, e la coordinazione toraco-addominale, riscuotendo un effetto positivo sulla saturazione di ossigeno (SpO₂) e che potrebbe essere utilizzato come intervento non-farmacologico ma correlato all’esercizio fisico in soggetti

---

5 L’angolo di fase (Phase Angle in inglese) è un parametro che rappresenta l’asincronia tra i movimenti della gabbia toracica e dell’addome. L’angolo di fase è stato misurato tramite LifeShirt system® sistema di pletismografia induttiva rappresentato da un indumento con all’interno delle fasce che misuravano l’induttanza.
con BPCO [103] mettendo in evidenza il grande potenziale che ha il movimento, in tutte le sue forme, nel migliorare la salute della popolazione e nel ridurre l’assunzione di farmaci, fonte principale di aumento dell’impatto economico di tutte le maggiori patologie. Un altro studio ha analizzato gli effetti di un RMET nei confronti di una patologia muscolo-scheletrica molto diffusa quale la cervicalgia cronica producendo risultati molto importanti [104] e partendo dal presupposto base che una disfunzione della respirazione e dei muscoli che la forniscono sono strettamente correlati alla suddetta patologia [105-108]. Durante questo studio un numero di 15 soggetti con cervicalgia cronica ha svolto 20 sessioni di RMET con SpiroTiger® riscuotendo buoni risultati, i quali sono stati un incremento significativo della Massima Ventilazione Volontaria (MVV), della Massima Pressione Inspiratoria (MPI) e della Massima Pressione Espiratoria (MPE). Oltre ai parametri della funzionalità polmonare hanno ottenuto miglioramenti anche parametri come la disabilità creata dalla cervicalgia cronica, che è diminuita ed è stata calcolata con il Bournemount Questionnaire, e miglioramenti nella resistenza dei muscoli flessori del collo e nella capacità di espansione del torace. Obayashi nel 2012 ha studiato l’effetto che un allenamento della muscolatura respiratoria ha nel migliorare la postura [109]. Nello specifico in questo studio è stato reclutato un campione di 26 nuotatori e sono stati randomizzati e divisi in due gruppi, uno che ha svolto RMET in un periodo di 4 settimane con una
frequenza di tre volte a settimana per 10 minuti a seduta, ed uno di controllo. Questo studio si basa sul concetto che i muscoli implicati nella respirazione svolgono anche una funzione di controllo posturale e di stabilizzazione del rachide tanto che dopo il protocollo sono stati registrati una diminuzione significativa della curva del rachide
dorsale e lombare, misurata con SpinalMouse® (Figura 32), un miglioramento della forza di flessione del tronco e un incremento della Capacità Vitale Forzata (CVF) e del Massimo Volume Espirato in 1 secondo (FEV₁ o VEMS). Questi risultati suggeriscono che l’utilizzo dello SpiroTiger® può aiutare a rinforzare la muscolatura del rachide, raggiungendo un buon atteggiamento corporeo antigravitario corroborato dalla riduzione delle curve del rachide, e favorendo un migliore controllo posturale dovuto anche ad una migliore contrazione dei muscoli addominali che oltre ad essere dei muscoli espiratori sono degli importanti stabilizzatori del rachide[109]. Nella
letteratura è presente anche uno studio che investiga il ruolo che un RMET ha nei confronti della lombalgia cronica [110] corroborando la tesi di Obayashi sul ruolo di stabilizzazione del rachide posseduto dai muscoli che intervengono nella respirazione [109]. Questo recente studio ha confrontato inoltre gli effetti di due diverse tipologie di intervento per migliorare la stabilità del rachide, misurata tramite l’angolo di estensione vertebrale lombare, che corrispondono ad un intervento che utilizzava solo esercizi di stabilizzazione del core ed un altro che univa a questi esercizi anche un lavoro di RMET (Figura 33). Le sedute avevano una durata di 45 minuti e sono state svolte con una frequenza di 3 volte a settimana per un periodo pari a 6 settimane. I risultati sono stati abbastanza evidenti riscontrando un miglioramento pre-post intervento statisticamente significativo nell’angolo di estensione vertebrale toracico e lombare, confermando il ruolo di stabilizzatori del rachide posseduto dai muscoli della respirazione, tra cui diaframma toracico, addominali e diaframma pelvico, e l’importanza che un RMET ha nel migliorare la condizione dei soggetti affetti da lombalgia [110].
CAPITOLO 4. APPLICAZIONE IN CLINICA

4.1 STATO DELL’ARTE E OBIETTIVO DELLO STUDIO

Nei capitoli precedenti si è discusso sull’importanza che il Low Back Pain ha assunto negli ultimi 30 anni come problema, patologia, sintomatologia a livello globale. Successivamente abbiamo descritto il sistema respiratorio e la meccanica respiratoria comprendendo quanto evitare disfunzioni della respirazione sia importante nel prevenire l’insorgenza di ulteriori problematiche che possono anche riguardare la “salute” o il “benessere” del rachide vertebrale.

Recentemente gli studi sulla respirazione, in particolare sul RMET, hanno iniziato ad aumentare confermando l’importante ruolo di un allenamento di resistenza dei muscoli respiratori sia sotto l’aspetto prestativo, sia sotto l’aspetto preventivo e/o di intervento nei confronti di patologie importanti come la BPCO, la fibrosi cistica, la cervicalgia cronica, e la lombalgie. Proprio quest’ultima è la protagonista di questo studio sperimentale che vuole dimostrare non tanto gli effetti sulla funzionalità polmonare dell’utilizzo del RMET con SpiroTiger® quanto piuttosto una sua applicazione differente rispetto a quelle fin’ora proposte in letteratura.

Partendo dal presupposto che il corpo è un sistema complesso che possiede la capacità per cui un lavoro, intervento, stimolo su di una struttura a monte può avere degli effetti, risultati, risposte su una struttura a valle, così come l’esatto opposto, lo studio cerca di ripercorrere questo modello di stimolo-risposta come già stato fatto in maniera simile in un altro recente studio che ha valutato gli effetti di un allungamento-detensionamento del diaframma sulla lunghezza degli ischio-crurali, sulla mobilità di tutta la catena cinetica posteriore e del rachide cervicale[8]. Questo studio di Valenza M.C., svolto nel 2015, ha suddiviso un campione iniziale in due gruppi randomizzati, in un gruppo ha utilizzato una tecnica chiamata “Doming-of-the-Diaphragm” che consisteva nel tentare di liberare le tensioni del diaframma, soprattutto in espirazione, coadiuvando la risalita del diaframma spingendolo cranialmente con le dita.
dell’operatore poste dietro le ultime coste antero-lateralmente durante dei movimenti
del torace, ed un altro gruppo che utilizzava uno strumento per gli ultrasuoni spento
per ricreare un effetto placebo sui soggetti. I risultati dello studio sono stati ottimi per
il gruppo sperimentale in quanto ci sono stati miglioramenti significativi in più test fra
cui il Forward-Flexion-Distance test, alterego del bending test, il Popliteal Angle Test,
anche conosciuto come AKET, il Schober test per la mobilità del rachide, e la mobilità
del rachide cervicale in flessione ed estensione sul piano sagittale e in flessione
bilaterale sul piano coronale o frontale. I risultati positivi di questo studio corroborano
la tesi secondo cui le catene cinetiche sono caratterizzate da patterns di movimento e
che il corpo funziona come un’unità dinamica piuttosto che come sommatoria di più
segmenti corporei con strutture e funzioni diverse fra loro.

La conseguenza di questo ragionamento è il considerare che le relazioni
biomeccaniche tra il diaframma e le altre strutture distali favoriscano delle mutue
ripercussioni in entrambe le strutture e che un intervento sul diaframma possa avere
delle modificazioni sui muscoli ischio-crurali in acuto così come dimostrato dallo
studio di Valenza M.C. [8]. Questi due muscoli nonostante facciano parte di due
regioni distinte del corpo si è ipotizzato che comunichino fra loro attraverso un
percorso formato dalla fascia, tessuto connettivo che riveste muscoli, articolazioni,
legamenti, tendini ed ossa entrando a far parte di questi componenti, e che possiede
un’alta concentrazione di terminazioni nervose sensitive e linee di forza tale da essere
considerato un tessuto metabolicamente molto attivo [111].

Se pensiamo al diaframma, questo si connette anteriormente alla fascia del trasverso e
posteriormente alla fascia toraco-lombare [19] che a sua volta tramite il legamento
sacro-tuberoso si collega agli ischio-crurali [13].

Questa è solo un’ipotesi su una possibile “strada” che collega biomeccanicamente e
fisiologicamente il diaframma a dei muscoli appendicolari, quali gli ischio-crurali.

Con questi presupposti, il presente studio si propone di esaminare se, grazie
all’utilizzo della metodologia dell’”iperpnea isocapnica”, migliorando la funzionalità
del diaframma e degli altri muscoli che partecipano alla meccanica respiratoria,
durante posture di allungamento, seguito da un protocollo di esercizi di rinforzo lombare e della catena caudale anteriore standardizzato per entrambi i gruppi, sia possibile ottenere:

1. un miglioramento della mobilità dell’anca (Active Knee Extension Test)
2. un miglioramento della flessibilità degli ischio-crurali (Active Knee Extension Test)
3. una riduzione o risoluzione della sintomatologia algica (Scala unidimensionale NPRS o NRS)
4. miglioramento della qualità della vita (Questionario SF-12)

4.2 DISEGNO DELLO STUDIO, SOGGETTI, MATERIALI E METODI

Questo studio randomizzato controllato è stato condotto presso lo Spine Center S.r.l. sotto la supervisione diretta del dott. Saverio Colonna. Il campione analizzato è composto da un gruppo di 6 soggetti di età compresa tra 36 e 78 anni, con un’età media di 52,3 anni (DS±14,25). I criteri di inclusione dello studio erano che i soggetti dovessero presentare problematiche di lombalgia o lombo-sciatalgia, e che queste fossero inquadrabili come sintomatologia, in una
Sindrome Flessoria secondo gli studi di Peter O’Sullivan, Shirley Sahrmann, Saverio Colonna e che quindi i soggetti dichiaravano dolore o disagio nei movimenti di flessione del tronco e in posizione seduta mentre in stazione eretta ed in estensione trovavano sollievo. Inoltre dovevano presentare una iperprogrammazione e/o accorciamento della catena craniale anteriore e della catena caudale posteriore, sede appunto degli ischio-crurali (Figura 34). La diagnosi di Sindrome Flessoria veniva svolta dal dott. Saverio Colonna, che successivamente inviava i soggetti nella palestra dello Spine Center S.r.l., diretta dal dott. Riccardo Tarozzi, al fine di iniziare il protocollo. I soggetti prima di essere assegnati ai due rispettivi gruppi hanno preso visione e firmato un consenso informato in cui accettavano di sottoporsi allo studio, indipendentemente dal gruppo di cui avrebbero fatto parte. Completata questa procedura, al fine di poter individuare nei soggetti eventuali progressi e/o modificazioni conseguenti al lavoro, entrambi i gruppi sono stati sottoposti, ad inizio e a fine protocollo, ad una valutazione che comprendeva un questionario sulla qualità della vita (SF-12 in versione italiana) [112] integrato della scala unidimensionale del dolore NPRS e di alcune domande aggiuntive sull’attività fisica che il soggetto svolgeva. Successivamente il soggetto veniva sottoposto ad un test, valido ed affidabile in letteratura, per la flessibilità degli ischio-crurali, l’Active Knee Extension Test, svolto con il Wiva Science®, un goniometro digitale o sensore IMU che misurava i gradi di estensione del ginocchio con quest’ultimo e l’anca fissati a 90° ed il soggetto in posizione supina su di un lettino. Per i soggetti che facevano parte del gruppo sperimentale, immediatamente dopo l’AKET, venivano misurati gli atti respiratori a riposo del soggetto in un minuto prima che iniziasero il protocollo di allungamento e rinforzo. Il campione iniziale prevedeva una numerosità pari a 9 soggetti, ma durante il follow up 3 soggetti hanno abbandonato lo studio per motivi diversi. Dopo il reclutamento i soggetti sono stati divisi in due gruppi:

1. un gruppo “sperimentale” che ha applicato un protocollo di lavoro di ginnastica
spiratoria in iperpnea isocapnica (metodo Spirotiger®) durante posture di allungamento (Figura 35a, 35b) di durata progressiva da 1’ a 3’ e successivamente degli esercizi di rinforzo per la component craniale posteriore e caudale anteriore standardizzati per entrambi i gruppi.

2. Un gruppo “controllo” che ha applicato un protocollo di allungamento in postura, per migliorare la mobilità dell’anca e la flessibilità degli ischio-crurali (Figura 36), di durata progressiva da 1’ a 3’ seguito dal protocollo di rinforzo muscolare standardizzato per entrambi i gruppi.

Entrambi i gruppi hanno svolto due sedute alla settimana di durata media di 1 ora, per un periodo minimo di 4 settimane e per un minimo di 9 sedute. La prima seduta è stata dedicata alla presa di confidenza all’utilizzo dello Spirotiger® in posizione seduta e in clinostatismo. Gli strumenti utilizzati per l’applicazione dei protocolli di lavoro sono stati:

3. Spirotiger®
4. Cinghia per allungamento
5. Lettino
Lo SpiroTiger® essendo progettato per atleti o per soggetti con BPCO e asma prevalentemente, tende a far ventilare il soggetto a FR troppo elevate, faticose, e impegnative per essere mantenute durante l’allungamento in posizione di clinostatismo, almeno nelle prime fasi. Questo è stato provato, testato e confermato prima di iniziare la sperimentazione sui soggetti. Per questo si è partiti dalla FR a riposo del soggetto per poi arrivare al ritmo indicato dalle linee guida dello SpiroTiger®. Questo è sembrato il modo migliore per intervenire sui soggetti anche dopo un colloquio telefonico con l’azienda dello strumento. Per creare una progressione di allenamento, su Excel è stato calcolato il delta tra la FR a riposo e la FR allenante dell’azienda. In seguito è stato diviso il ΔFR in percentuali progressive, da aggiungere ogni seduta alla FR a riposo per ricercare al termine delle 9 sedute di raggiungere la FR allenante. C’è da sottolineare che l’aumento di FR allenante è stata accompagnata dall’aumento del tempo di allungamento nelle 9 sedute da 1’ a 3’. Come metodo di quantificazione dello sforzo percepito si è deciso di fare affidamento alla RPE o scala di Borg (scala della percezione dello sforzo) per decidere quale fosse la FR allenante migliore per il soggetto e come progredire l’allenamento considerando 4/10 RPE il tetto massimo da non superare, sottolineando che l’obiettivo principale non è stato aumentare la capacità di ventilare del soggetto bensì ricercare l’allungamento dei muscoli posteriori della coscia, muscoli “incriminati” di creare una eccessiva retroversione del bacino e di sviluppare la sintomatologia algica. Inoltre si è tentato di migliorare la funzionalità del diaframma, in primis per migliorare la sua risalita in fase espiratoria, che ci aspettiamo incrementi il detensionamento di
tutta la catena posteriore, e a posteriori, per non andare a sovraccaricare tutti i muscoli accessori della respirazione che poi possono creare compensi e trasformarsi in disfunzioni, alle volte anche algiche. Per i soggetti dello studio, l’utilizzo dello strumento è risultato inizialmente difficoltoso ma solo nelle prime due o tre sedute, per questo motivo si è deciso di battezzare l’obiettivo della prima seduta nella presa di confidenza con lo strumento; successivamente l’utilizzo dello strumento diventava più fluido e confortevole, tanto che il livello di fatica percepito sulla scala di Borg si è stabilizzato su un punteggio pari a 3-4, dopo le prime sedute fino a fine protocollo. L’allenamento con SpiroTiger® prevedeva sempre una molletta per chiudere le cavità nasali, in modo tale che l’aria defluisse solo tramite la cavità orale, e per evitare che questa venga dispersa dal naso durante la respirazione forzata, fattore che avrebbe inficiato sulla prestazione respiratoria e determinato l’incapacità di riuscire a ventilare, nella sacca dello SpiroTiger®, il volume d’aria preimpostato per l’allenamento.

4.2.2 AKE TEST MODIFICATO, WIVA SCIENCE® E I SENSORI IMU

All’inizio e al termine dello studio i due gruppi sono stati valutati, per cercare di trovare delle relazioni tra i diversi protocolli e per fare delle riflessioni sugli “outcome” finali, in relazione alla lunghezza dei muscoli ischio-crurali. Come già espresso, l’intento dello studio è stato capire se un allenamento dei muscoli

Figura 37 | Posizione iniziale Active Knee Extension Test modificato con soggetto supino sul lettino, anca flessa a 90°, ginocchio flesso a 90° appoggiato sul supporto regolabile, Wiva Science® applicato sul terzo distale del perone, lombarino posizionato sotto al rachide lombare.
respiratori, e quindi delle respirazioni forzate, unite ad allungamento statico in
postura, possano indurre risultati migliori in termini di mobilità dell’anca e di
flessibilità degli ischio-crurali rispetto al solo stretching statico in postura, in
soggetti con lombalgia. Il test utilizzato per la valutazione della lunghezza degli
ischio-crurali è stato l’Active Knee Extension Test modificato. Questo test consta
della valutazione della lunghezza dei muscoli ischio-crurali e per il suo
svolgimento è stato chiesto al soggetto di disporsi supino su un lettino e
successivamente è stato inserito un supporto sotto il ginocchio e la gamba da
testare. Il ruolo del supporto è quello di mantenere l’anca ed il ginocchio a 90° di
flessione e di impedire eventuali movimenti compensatori che potrebbero
inficiare sull’affidabilità e ripetibilità intra- e inter-operatore del test. Inoltre il
supporto è dotato di una superficie d’appoggio per la gamba, regolabile in altezza
a seconda della lunghezza del femore del soggetto. Una volta regolato il supporto ed inserito quest’ultimo sotto il ginocchio e la gamba da testare del soggetto, in prossimità del terzo distale del perone è stato accuratamente posizionato il Wiva Science® (Figura 37,38,39), un’unità di misura inerziale(IMU), o sensore inerziale, il quale misurava in gradi il “Range Of Movement” (ROM) del ginocchio in estensione rispetto alla posizione di partenza di anca e ginocchio flessi a 90°. In letteratura questo test viene svolto calcolando la differenza tra la massima estensione possibile (90°) e i gradi di movimento raggiunti dall’estensione del ginocchio, ma per comodità di calcolo abbiamo preferito considerare i gradi di movimento dalla parallela al piano d’appoggio alla massima escursione articolare durante estensione della gamba (Figura 37, 38). Un’altra particolarità nell’esecuzione di questo test è stata il posizionare un lombarino semi-rigido sotto il rachide lombare. Questa scelta è stata fatta per limitare il più possibile il coinvolgimento della retroversione pelvica durante l’esecuzione del test e quindi per evitare di incorrere in errori della valutazione degli ischio-crurali. Questo perché gli ischio-crurali si inseriscono sulle tuberosità ischiatiche, e se messi in tensione, potrebbero aumentare la mobilità.

Figura 39 | Sensore inerziale Wiva Science® [118,131,132].
del ginocchio, spostando la loro inserzione più prossimale (tuberosità ischiatiche) verso quella più distale (tibia) e quindi provocando una retroversione del bacino tale da inficiare la reale valutazione della sola componente degli ischio-crurali. Questo problema è stato notevolmente limitato, modificando il test e inserendo un lombarino semi-rigido sotto il rachide lombare. L’esecuzione del test prevedeva tre estensioni di ginocchio in cui si chiedeva al soggetto di ricoprire il maggior angolo possibile fino a percepire una forte tensione dietro il cavo popliteo tale da rendere impossibile l’ulteriore distensione del ginocchio senza movimenti di compenso. Come risultato finale è stato preso in considerazione in entrambi i gruppi, la prova con escursione maggiore fra le tre. Anche la posizione della caviglia è stata oggetto di standardizzazione chiedendo al soggetto di mantenerla a 90° di flessione dorsale durante tutta l’esecuzione dei tre tentativi del test. La scelta dell’AKE test per la valutazione degli ischio-crurali, in termini di lunghezza, è stata preceduta da un’attenta analisi della letteratura scientifica e valutazione dell’affidabilità e validità del test. In letteratura sono presenti molti test che misurano la flessibilità degli ischio-crurali ma quello con maggiore validità, affidabilità intra- ed inter-operatore, minimo
rischio di movimenti compensatori e specificità per la sola componente degli ischio-crurali è stato l’AKE test.

Questo test è stato proposto per la prima volta da Gaidosjk e da Lusin [113] nel 1983 e da quel momento ha riscosso sempre più successo essendo considerato dagli operatori del settore il Gold Standard per la valutazione della lunghezza degli ischio-crurali [114-116]. Questo test è stato non solo considerato il Gold Standard ma, uno studio di Hamid M.S.A. del 2013, ha dimostrato anche un’ottima affidabilità intra- ed inter-operatore rendendo minimi gli errori di valutazione [114]. Considerando il fatto che questo test veniva proposto utilizzando un goniometro ortopedico e che non veniva utilizzato un lombarino per limitare il movimento della pelvi è possibile che fosse ancora sensibile di errore. Al contrario di quanto fatto in questi studi, nel riproporre il test è stato utilizzato sia il lombarino, sia il supporto che permetteva ad anca e ginocchio di rimanere flessi a 90°, sia una unità IMU. Le unità di misura inerziale o IMU (Inertial Measurement Unit) sono sistemi elettronici basati su sensori inerziali, ovvero accelerometri, magnetometri e giroscopi. Dunque l’analisi dell’escursione articolare del ginocchio è stata realizzata tramite Wiva Science® (Figura 39) [117-118, 131-132], un dispositivo in grado di trasformare grandezze cinematiche (posizione, velocità, accelerazioni) o dinamiche (forze, momenti, potenze) in segnali elettrici che vengono acquisiti, digitalizzati e poi elaborati da un software chiamato BioMech Science® installabile su computer(Figura 40). Una considerazione da fare è che la misura dell’escursione articolare con Wiva Science® è pur sempre una misura indiretta e quindi è possibile che la misura includa un errore, e per quanto questo possa essere piccolo, sarà sempre una misura “papabile” di errore. Tuttavia la letteratura è concorde nel considerare i sistemi inerziali una soluzione valida, accurata ed affidabile per studiare il movimento umano così come confermato dalla review di Cuesta-Vargas A.I. del 2016, tenendo presente che i risultati sono strettamente dipendenti dal contesto, compito e utilizzo richiesto [119]. Un particolare da ricordare è che il Wiva Science® è la versione successiva del celebre Free4Act®, ed è quindi stato
migliorato da ogni punto di vista oltre che aver ricevuto un implementazione dei protocolli molto utili per la ricerca e per la programmazione dell’allenamento. Così come il Free4Act®, il Wiva Science® permette dunque l'analisi delle accelerazioni e le velocità angolari su un sistema di riferimento a tre assi ortogonali. L'interfaccia software però permette di stimare anche altre informazioni. Infatti, selezionando il protocollo “Mobilità Articolare”, è possibile misurare il ROM dell'articolazione desiderata. Il software possiede già una libreria predefinita di test, e per ognuno viene indicato il posizionamento del sensore e la modalità di esecuzione. All'avvio dell'analisi sono previsti 4 secondi in cui il soggetto deve necessariamente rimanere il più fermo possibile. In questo lasso di tempo viene settato il sistema di riferimento iniziale da cui verranno stimati i parametri angolari desiderati. Una volta conclusa l'analisi è possibile anche indicare l'intensità del dolore, se percepito, su una Numeric Pain Scale. Successivamente viene restituito un report in cui viene visualizzato l'angolo massimo raggiunto e quello minimo. In caso di prove ripetute nella stessa sessione di analisi, vengono anche riportati i singoli angoli raggiunti. Inoltre, è possibile anche visualizzare la velocità angolare nei singoli istanti di cattura del segnale nei vari piani dello spazio.

4.2.3 SF-12 E NUMERIC PAIN RATING SCALE

Come anticipato nel primo paragrafo, Deyo [28] coglie l’importanza che ha un approccio di valutazione standardizzato nella ricerca sul LBP, permettendo di confrontare studi diversi per trovare correlazioni positive tra intervento proposto ed “outcome”, e seguendo la sua visione sulla ricerca è stato deciso di somministrare ai soggetti dello studio due test cardine nell’attuale letteratura, soprattutto in ambito patologico, tra cui l’SF-12, per la qualità della vita, e la NPRS (Numeric Pain Rating Scale) per il dolore. Questi due possono essere considerati, al contrario dell’AKET, due test soggettivi nel quale veniva chiesto
ai soggetti di rispondere a delle domande riguardanti la loro condizione fisica e mentale nelle 4 settimane precedenti e di dare un voto da 1 a 10 pari all’intensità del dolore che in quel momento percepivano. Questa tipologia di approccio è stata scelta anche per poter dare un feedback ai soggetti al termine dello studio. Il questionario SF-12 è la versione breve del questionario SF-36. Attraverso 12 domande del questionario SF-36, si è individuato un 10% della varianza sia di PCS-36 che di MCS-36. L’aggiunta di altre 2 domande, statisticamente non rilevanti ma utili per fornire una completa descrizione delle 8 scale presenti nel questionario più lungo, ha permesso la produzione di una versione di 12 domande attraverso la quale è possibile ottenere stime degli indici PCS-36 ed MCS-36 che sono più che soddisfacenti sia dal punto di vista statistico che pratico. Questa nuova forma breve è stata denominata SF-12 [120]. Il questionario SF-12, permette di descrivere la salute di un gruppo di persone facendo uso di 2 domande per ciascuna delle seguenti scale del SF-36: attività fisica [PF], ruolo e salute fisica [RP], ruolo e stato mentale [VR], salute mentale [MH], vita sociale [VS], energia [RE], disturbi del sonno [ESS], e domande specifiche [GPE, VAS].

Tabella 2: descrizione sintetica dei punteggi bassi e alti nelle due rispettive aree valutative del test, fisica(PCS) e mentale(MCS).
emotivo [RE] e salute mentale [MH]. Le rimanenti scale quali dolore fisico [BP], salute generale [GH], vitalità [VT] e attività sociali [SF] vengono descritte con una sola domanda ciascuna. Numerosi studi empirici, condotti anche in popolazioni europee, hanno mostrato che gli indici sintetici del questionario SF-12 correlano con i corrispondenti indici del questionario SF-36 con un range di valori compresi tra 0,93 e 0,97 [121]. La descrizione degli stati di salute associati con punteggi molto bassi e molto alti dei due indici sintetici ricavati dalla combinazione delle 12 domande estratte dal questionario SF-36 è disponibile nella Tabella 2. Per quanto riguarda la valutazione del dolore invece si è scelto di utilizzare la scala NRS a 11 punti. Questa è definita la scala che offre la miglior affidabilità e validità nella valutazione del dolore. Molti studi hanno riportato la sua importanza e fruibilità su più soggetti con caratteristiche varie [123-126], sottolineando anche la potenza di questo test nel determinare l’intensità del dolore nei soggetti e studi presi in considerazione, definendolo il Gold Standard fra le varie scale di valutazione del dolore.

4.3 ANALISI DEI DATI E RISULTATI

Al termine dello studio i soggetti sono stati rivalutati seguendo i protocolli utilizzati nella prima valutazione i quali hanno compreso: il AKE test modificato, per la valutazione dell’allungamento raggiunto dai muscoli ischio-crurali dopo l’intervento; la somministrazione del questionario SF-12, per la valutazione della qualità della vita secondo i due indici cardine di questo questionario, il PCS (Physical Component Summary) a riguardo dello stato fisico e il MCS (Mental Component Summary) a riguardo dello stato mentale dei soggetti; la valutazione dell’intensità del dolore percepito su una scala a 11 punti, conosciuta con il nome di Numeric Pain Rating Scale(NPRS). Dopo 4 settimane, tempo in cui sono state svolte le 9 sedute di rieducazione motoria per i soggetti con lombalgia da sindrome flessoria, di cui la prima seduta aveva l’obiettivo di far familiarizzare i soggetti con i diversi protocolli,
sono state ripetute le valutazioni seguendo il seguente ordine: questionario SF-12, NPRS, e AKE test modificato. Per quanto riguarda gli indici PCS e MCS dell’SF-12, questi sono stati calcolati utilizzando un foglio Excel, fornito dall’ Università di Bologna ed elaborato da Ottoboni G. [127], il quale conteneva degli algoritmi di calcolo degli indici in base alle risposte date al test. Importante risulta sottolineare che la correttezza di questi algoritmi è basata su misurazioni elaborate su una casistica di 50 soggetti da Apoloni e colleghi, del 2015 [128-129]. Nello specifico dall’analisi degli indici è emerso che la media pre-intervento del gruppo di controllo è stata rispettivamente di 33,32(SD $\pm$6,81) per il PCS e di 32,51(SD $\pm$3,09 ) per il MCS, mentre la media post-intervento del gruppo di controllo e stata rispettivamente di 33,68(SD $\pm$0,79) per il PCS e di 38,77(SD $\pm$9,69) per il MCS.

Prendendo in considerazione il gruppo sperimentale, la sua media pre-intervento è risultata pari a 39,78 (SD $\pm$11,22) per il PCS e pari a 47,61(SD $\pm$6,65) per il MCS, mentre le medie post-intervento sono state pari a 46,44(SD $\pm$16,74) per il PCS e pari a 45,91(SD $\pm$15,17) per il MCS. Dall’analisi di questi valori è stata riscontrata una differenza importante nell’indice sullo stato fisico percepito nel gruppo sperimentale che è migliorato di 6,66 punti nel post-intervento al contrario di quello del gruppo di controllo.
controllo che è migliorato solo di 0,36 punti rappresentando un risultato poco rilevante. Esattamente l’opposto è stato riscontrato nell’indice MCS, infatti il gruppo di controllo che ha presentato un miglioramento pari a 6,25 punti sulla scala del benessere psichico e mentale (MCS) rispetto alla media pre-intervento in confronto al gruppo sperimentale il quale ha ottenuto, nel post-intervento, un risultato pari a -1,69 punti, nell’indice MCS, rispetto al pre-intervento, ma anch’esso non incisivo visto il miglioramento ottenuto nell’indice PCS dal gruppo sperimentale nel post-intervento (Figura 41).

Al termine dell’intervento, in entrambi i gruppi, è stata analizzata la differenza media tra i valori iniziali di intensità del dolore e quelli indicati al termine dello studio. Nello specifico è stato calcolato un decremento medio di 3,33 punti nella scala NRS del dolore post-intervento nel gruppo sperimentale, mentre nel gruppo di controllo è stato calcolato un decremento medio di 2 punti. Considerando che, secondo Hawker G.A., una varianzione di almeno 2 punti del risultato sulla scala NRS, è considerata un cambiamento clinicamente significativo [130], possiamo affermare che entrambi i gruppi hanno tratto beneficio dall’intervento applicato, riscontrando maggior successo nel gruppo sperimentale (Figura 42).
Ultimo test somministrato ad inizio ed a termine dello studio è stato l’AKE test modificato. Questo è stato anche l’unico parametro oggettivo misurato e rispettivamente è stato registrato un miglioramento medio della flessibilità degli ischio-crurali di entrambi gli arti, a fine intervento, di 12,36° pari al 13,74% nel gruppo sperimentale, rispetto ad un miglioramento medio di entrambi gli arti di 5,17° pari al 5,75% nel gruppo di controllo (Figura 43). Purtroppo il campione dello studio, essendo poco numeroso, non ha permesso di calcolare la significatività statistica dei risultati ottenuti ma in base ai valori registrati è stato eseguito un T test su Excel che ha descritto il risultato ottenuto nel gruppo sperimentale non dovuto al caso ma alla diversa somministrazione dell’intervento per un p-value <0.05.
Figura 43 | GS: Gruppo Sperimentale; GC: Gruppo di Controllo
A seguito dell’analisi dei dati sono stati raccolte delle importanti informazioni sul ruolo che ha l’integrazione della ginnastica respiratoria durante posture di allungamento assieme ad un protocollo di rinforzo della muscolatura lombare, del core e dei flessori d’anca, muscoli deputati al mantenimento di una fisiologica antiversione del bacino in soggetti con diagnosi di Sindrome Flessoria. L’analisi dei dati per quanto riguarda gli indici PCS e MCS dell’SF-12 suggerisce che un protocollo di allungamento della muscolatura ischio-crurale durante allenamento della muscolatura respiratoria con SpiroTiger® ha fornito ottimi risultati per l’indice PCS sul “benessere fisico” con un miglioramento di quest’ultimo di +6,66 punti nel post-intervento suggerendo quindi che il tipo di intervento svolto dal gruppo sperimentale sia benefico per la qualità di vita dei soggetti dal punto di vista fisico, al contrario dell’indice MCS per il “benessere mentale” che ha subito un calo di -1,69 punti ma che a fronte dell’alto punteggio assoluto, pari a 45,91 (SD ±15,17), non rappresenta un risultato clinicamente significativo al contrario dell’indice PCS che è cambiato da 39,78(SD ±11,22) a 46,44(SD ±16,74) indentificando un importante cambiamento sulla percezione dello stato fisico dell’individuo. In maniera quasi speculare è stato ottenuto lo stesso miglioramento per il gruppo di controllo, nell’indice MCS, registrando un incremento di +6,25 punti sul “benessere mentale”. Invece, per quanto riguarda l’indice PCS, il gruppo di controllo non ha ottenuto un miglioramento clinicamente significativo tanto che è aumentato di soli +0,36 punti, risultato poco determinante sul “benessere fisico” della persona rimasto praticamente allo stesso livello del pre-intervento. I risultati sopra riportati evidenziano una supremazia dell’intervento con SpiroTiger® durante posture di allungamento per il miglioramento della percezione della salute fisica dei soggetti, ma allo stesso tempo un intervento “tradizionale”, come quello del gruppo di controllo, si è reso utile dal punto di vista dell’indice sulla salute mentale dei soggetti aspetto sicuramente molto determinante nel managment e nelle strategie di coping messe in atto da parte dei soggetti affetti da lombalgia, nei confronti del dolore acuto e cronico causato da quest’ultima. Anche per la scala NRS
del dolore si è registrato un miglioramento positivo per entrambi i gruppi ma determinante soprattutto in quello sperimentale. Infatti il punteggio medio su NRS del gruppo sperimentale è migliorato di ben 3,3 punti rispetto al miglioramento medio di 2 punti su scala NRS del gruppo di controllo. Questi risultati suggeriscono che entrambi gli interventi si sono rivelati efficaci al fine di migliorare la sintomatologia algica che in sole 4 settimane è diminuita da un minimo di 2 punti nel gruppo di controllo ad un massimo di 3,3 nel gruppo sperimentale, entrambi valori ritenuti clinicamente significativi per un cambiamento della sintomatologia algica calcolata su NRS secondo lo studio di Hawker G.A., il quale considera una variazione di almeno 2 punti del risultato sulla scala NRS, il valore di cut-off per considerare un cambiamento clinicamente significativo della percezione del dolore [130]. Oltre questi due test soggettivi, è stato proposto anche un test oggettivo per il miglioramento di una capacità condizionale dei soggetti: la flessibilità dei muscoli ischio-crurali. Questi muscoli, che si ricorda essere gli incriminati per una eccessiva rotazione pelvica posteriore o comunemente chiamata retroversione, sono stati testati tramite AKE test modificato e i risultati post-intervento sono stati molto interessanti. Infatti, entrambi i gruppi hanno ottenuto un miglioramento della mobilità degli ischio-crurali ma va sottolineato che nonostante questo il gruppo sperimentale ha registrato un miglioramento pari a due volte quello del gruppo di controllo incidendo maggiormente sulla flessibilità degli ischio-crurali. Questo è confermato dai dati ricavati dalle misurazioni che descrivono il miglioramento della flessibilità degli ischio-crurali del gruppo sperimentale pari al 13,74%(12,36°) in confronto al 5,75%(5,17°) del gruppo di controllo. Inoltre è stato svolto un test T, test statistico di tipo parametrico con lo scopo di verificare se il valore medio di una distribuzione si discosta significativamente da un certo valore di riferimento, il quale ha confermato che il risultato ottenuto dal gruppo sperimentale rispetto a quello del gruppo di controllo è dovuto all’intervento e non al caso, per un p-value <0.05. Possiamo dunque confermare che l’intervento con SpiroTiger® durante posture di allungamento di durata progressivamente maggiore, da 1’ a 3’ durante 4 settimane, in unisono con un protocollo di rinforzo del core e della muscolatura che permette la flessione dell’anca,
nei soggetti con sindrome flessoria, si è rivelato un buon intervento migliorando sia il “benessere fisico” della persona, sia la sua percezione del dolore e sia la flessibilità degli ischio-crurali in maniera determinante rispetto al gruppo di controllo. In ogni caso va sottolineato che anche l’intervento svolto senza l’ausilio dello SpiroTiger nel gruppo di controllo si è dimostrato efficace, seppur in maniera limitata rispetto al gruppo sperimentale, nel migliorare l’indice MCS per il “benessere mentale”, nel favorire una riduzione del punteggio su scala NRS e nel predisporre ad una maggiore flessibilità degli ischio-crurali in solo 4 settimane. Questo studio ha trovato ispirazione in due studi in particolare di Valenza M.C. [8] e González-Álvarez F.J. [9] con l’intento di trovare delle conferme sull’importanza che un allungamento della muscolatura diaframmatica ha nel migliorare la mobilità dell’anca, conseguenza diretta di una migliorata flessibilità degli ischio-crurali. La macro-differenza fra lo studio appena descritto e quello di questi due autori, in particolar modo nei confronti dello studio di Valenza M.C., è stata il proporre una tecnica denominata “Dooming of the Diaphragm” che consta nel favorire manualmente l’allungamento del diaframma, inserendo le dita al di sotto del costato per aiutare il diaframma a risalire, al contrario dello studio qui proposto che non ha utilizzato tecniche manuali bensì delle espirazioni forzate e ritmiche per permettere agli addominali, contraendosi forzatamente e sinergicamente, di favorire l’espulsione di aria dai polmoni aumentando la pressione intra-addominale e spingendo il diaframma molto cranialmente favorendo un suo importante allungamento indotto appunto dalla aumentata capacità contrattile di tutta la muscolatura del core, che come la letteratura suggerisce, è la muscolatura che favorisce la stabilità del rachide lombare in molteplici condizioni[2-4,13-14,18,42,55]. Dunque gli aspetti che l’utilizzo dello SpiroTiger unito ad un allungamento statico della muscolatura ischio-crurale concorre a migliorare sono due: uno basato sul rinforzo e l’allungamento forzato di un muscolo a monte, il diaframma, che influenza sull’allungamento di un muscolo a valle, gli ischio-crurali, e l’altro basato sull’utilizzo di espirazioni ed inspirazioni forzate per migliorare la sinergia dei muscoli del core che fornirebbero maggiore stabilità al rachide lombare. Entrambi questi due aspetti possono portare beneficio ai soggetti con lombalgia, l’uno favorendo la mobilità
dell’anca e una posizione del bacino in antiversione fisiologica e l’altro migliorando la coordinazione, sinergia e capacità di contrarsi della muscolatura del core che stabilizzerebbe il rachide lombare, garantendo un continuo supporto alla colonna vertebrale. Dunque lo studio ha tentato di confermare i risultati degli studi precedentemente citati, aprendo le porte per un nuovo ruolo che potrebbe investire la ginnastica respiratoria tramite SpiroTiger® durante allungamento statico nell’intervento su soggetti con lombalgia. Inoltre si rende sempre meno incerto il coinvolgimento della fascia, come componente fondamentale del nostro sistema muscolo-scheletrico e non solo, nell’allungamento della muscolatura corporea. Infatti i risultati dello studio proposto confermano un possibile collegamento biomeccanico tra il diaframma e gli ischio-crurali. Questo collegamento avviene attraverso i legamenti arcuati mediali e laterali del diaframma, la fascia toraco-lombare che si connette al sacro, sul quale si inserisce il legamento sacro-tuberoso che si inserisce a sua volta sulla tuberosità ischiatica, sede dell’inserzione degli ischio-crurali, rappresentando un possibile collegamento fasciale tra strutture apparentemente distanti ma funzionalmente collegate l’una all’altra, tanto che una perturbazione o stimolo in una struttura può sviluppare risposte nell’altra. Purtroppo lo studio qui proposto non è stato privo di limiti, infatti, non è stato confrontato un campione ulteriore che non svolgeva nessuno fra i due protocolli, non sono stati valutati miglioramenti della funzionalità polmonare poiché l’obiettivo è stato di verificare se un allenamento respiratorio durante allungamento statico potesse generare un guadagno ulteriore in termini di flessibilità degli ischio-crurali rispetto al gruppo di controllo che svolgeva solo allungamento. Un altro limite dello studio al momento è il campione dello studio, il quale è troppo piccolo per verificare una significatività statistica dei risultati ottenuti. Con i risultati ottenuti da questa prima analisi però, ci aspettiamo che l’utilizzo dello SpiroTiger® possa essere integrato all’allenamento della muscolatura respiratoria tanto quanto ad un miglioramento della flessibilità degli ischio-crurali, e secondariamente che possa essere utilizzato per ridurre la sintomatologia algica e migliorare la qualità della vita dei soggetti affetti da lombalgia. Ulteriori studi dovrebbero approfondire questa tematica cercando di trovare una correlazione fisiologica e biomeccanica tra un
Allenamento della muscolatura respiratoria durante allungamento statico ed un’aumentata flessibilità muscolare nell’apparato appendicolare, soprattutto dei muscoli che prendono contatto con il diaframma nell’addome, tra cui un esempio cardine è lo Psoas. Un altro limite dello studio è stato quello di limitare l’intervento a solo 4 settimane limitando molto i risultati ottenuti e non verificando un effetto a lungo termine di questo intervento con SpiroTiger® per cui è consigliabile, in studi futuri, proporre un intervento di durata maggiore, con un campione più numeroso e con la presenza di un gruppo di controllo senza intervento. Con la speranza che le evidenze scientifiche e le ricerche approfondiscano queste tematiche si può affermare che il RMET con SpiroTiger® è un allenamento ottimo per la funzionalità respiratoria in molteplici condizioni fisiche e che per i soggetti lombalgici potrebbe rappresentare un tipo di intervento da integrare agli esercizi di stabilizzazione del rachide, che potrebbe aiutare a migliorare la condizione dei soggetti con lombalgia.
BIBLIOGRAFIA


72. Urfy M.Z., Suarez J.I., Breathing and the nervous system, Chapter 17, Department of Neurology, Baylor College of Medicine, Houston, TX, USA, 2014. Handbook ofClinical Neurology, Vol. 119 (3rd series) Neurologic Aspects ofSystemic Disease Part I Jose Biller and Jose M. Ferro, Editors © 2014 Elsevier B.V. All rights reserved.


85

82. Hodges PW, Richardson CA: Contraction of the abdominal muscles associated with movement of the lower limb, Phys Ther 77:132, 1997


91. Essendrop M, Schibye B: Intra-abdominal pressure and activation of abdominal muscles in highly trained participants during sudden heavy trunk loadings. Spine. 29(21): 2445-2451, 2004


93. http://spirotiger.it/spirotiger-medical/


102. Pause M, Kamin WE. Improved pulmonary function and increased sputum expectoration in CF patients after additional training with SpiroTiger® compared to supervised conventional physiotherapy alone. Pediatrics Pneumology, University of Mainz, Germany (September 5, 2006), Thematic Poster Session: From genes to outcome: a long distance.


105. Dimitriadis Z, Kapreli E, Strimpakos N, Oldham J. Hypocapnia in patients with chronic neck pain: Association with pain,


RINGRAZIAMENTI

Desidero ringraziare di cuore il Professore Guido Belli saggia guida, rassicurante maestro, eccelsa persona, idolo e motivo per il quale ho scelto, due anni fa, di svolgere la magistrale all’Università di Bologna piuttosto che al “Foro Italico” di Roma. Lo ringrazio, per aver accettato l’incarico di relatore della mia tesi, per il tempo dedicatomi e per l’incredibile disponibilità dimostrata durante tutto il percorso di studi a Bologna, che spero sia solo un punto di partenza per la mia futura crescita professionale.

Un sentito e dovuto ringraziamento va al chiarissimo Dott. Saverio Colonna, per la professionalità, disponibilità, umiltà nell’affrontare una ricerca sperimentale, per avermi dato modo di permanere all’interno dello Spine Center S.r.l. per continuare la nostra ricerca e per tutte le volte che parlandomi mi ha motivato, con la sua immensa conoscenza, ad approfondire delle tematiche, facendo ampliare la mia visione del corpo umano a tredicesimosei gradi.

Ringrazio tutto il Team dello Spine Center S.r.l. tra cui Riccardo, Raffaella, Martina, Michele Veronica, Alessia, e tutti i fisioterapisti per avermi sempre accolto come “uno di loro” e per le innumerevoli volte che mi hanno teso una mano nei momenti di difficoltà, tutte persone davvero speciali.

Un ringraziamento va a Lorenzo Casadio, caro amico, che per la stima nei miei confronti mi ha donato la strumentazione Wiva Science per poter effettuare i test per il presente studio e spero di ripagarlo presto con dei buoni risultati da pubblicare in letteratura.

Ringrazio tutto il Team della FitandGo Bologna Marconi per l’appoggio che mi hanno dato nei momenti in cui ne ho avuto bisogno, per la disponibilità, per le birre, cene, viaggi insieme. Siamo una bella squadra e sono contento di far parte di questo gruppo abbastanza “atipico”.

Tra le persone speciali che mi hanno regalato tantissimi momenti di gioia, divertimento e “shallo” devo perforza menzionare tutti gli amici che ho incontrato in questo percorso. Assi portanti della mia esperienza Bolognese e ormai della mia vita, spero di non perderci mai di vista e grazie per aver compreso le mie “assenze” e “sparizioni” per lunghi periodi e per avermi sempre accolto come parte importante del gruppo.
Come buon studente fuorisede non posso che ringraziare la mia seconda famiglia, Giuli e Robi. Aspettarci per mangiare insieme nonostante i crampi allo stomaco, l’ascoltarci per ogni minimo evento accaduto in giornata, il supportarci nei momenti di difficoltà rappresenta solo la punta dell’iceberg di quello che abbiamo creato in soli due anni di convivenza, anche se dicendo la verità, sin dal primo giorno che sono arrivato, è stato come se il cerchio si fosse chiuso e da li poteva solo migliorare quello che c’è stato tra di noi. Ricordo le sessioni esami insieme, i momenti di esaурimento traumatico da tirocinio all’Isokinetic, le giornate in cui Robi gridava dal nulla “Fa caldoo!” a 25° e i periodi di freddo in cui uno yeti si aggirava per casa e poi scoprii che era solo Giuli in modalità “antistupro”; tutto questo è parte di quello che porterò per sempre con me e se c’è qualcosa che spero vivamente, questo è che nonostante gli impegni, gli erasmus a Barcellona e i viaggi in Cina, noi riusciamo a non perdere di vista ma bensì a rimanere “vicini” per sempre. Non posso dimenticare le serate insieme in casa tra un Temptation Island e un Bake Off, perché quello era linfa vitale della casa e dimostrazione che insieme stavamo bene, davvero bene; grazie per aver preferito rimanere a casa insieme piuttosto che uscire con gli amici in centro. Senza voi sarebbe stato tutto più difficile e se esiste davvero un Dio, lo ringrazio per avermi fatto conoscere due esaurite come voi, le mie sorelle diverse acquisite.

Ultima ma non di certo per importanza, ringrazio la mia Famiglia che mi ha permesso di partire a Bologna con sue giorni di preavviso e che mi ha visto lasciare quella che indiscutibilmente si chiama “Casa” senza battere ciglio. Anzi, mi avete spuronato a perseverare nella mia strada nonostante le difficoltà economiche che un momento storico famigliare come questo hanno imposto. Siamo una famiglia piccola ma unita nel bene e nel male, con dei nonni che sono i nostri bastoni di vita giorno dopo giorno piuttosto che noi i loro, sempre pronti a risolvere qualsiasi tipo di problema. Le parole che potrei dedicare alla mia famiglia sono troppe per essere sintetizzate qui. Sappiate solo che non mi sono “dimenticato” di voi e che il ringraziamento più grande va a voi, per la fiducia, il rispetto dimostratomi, per i pacchi spediti da giù che mi facevano sentire temporaneamente a casa ma soprattutto per i SACRIFICI che fate ogni giorno per me e Giorgia. Questo traguardo non lo dedico a me, questo traguardo lo dedico interamente a voi per esserci sempre stati anche a 600km di distanza. Grazie!